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Modular Reductions

Many cryptographic programs need A mod M, most often for a known M.

« For RSA and ECC, usually the numbers are multi-limb and unsigned.

« For postquantum cryptography (PQC) they are often single limb and signed.

« Often it is not necessarily that we have an exact A mod M, anything small
that we can continue to compute with is okay.
+ At the end of the computation the canonical form is needed.
 There are two classes of approaches:

Approximate Quotients: try straightforwardly to approximate A+ M
Hensel Remainders: ...find exactly AR mod M for some R (see below)
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Barrett Reduction: Approximating Quotients

« For Amod M = A - [A/M]M (centered), |[A/M] then obviously approximated
JA/M] = [Ax|2R/M]/2F] = (A < |28 /M] + 287 > k. (> is “shift”.)
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Barrett Reduction: Approximating Quotients

« ForAmod M = A -]A/MIM (centered), |[A/M] then obviously approximated
JA/M] = [Ax|2R/M]/2F] = (A < |28 /M] + 287 > k. (> is “shift”.)

 Suppose we instead want the unsigned A mod M = A-|A/M]M. Do we want
« |A/M] = |Ax[2F/M]/2R] = (A x| 2R /M]) > k? Then the approximate A mod M is
nonnegative, but returns a noncanonical M instead of 0 if we substitute M.
« Orwe use |A/M] 5 [A x |28 /M]/2%] = (A x[2}/M]) > k? This might return a
negative A mod M. In particular, where A x [2F/M]/2F is just above the integer
a, or A 2 ax 2k /[2% /M), if simultaneously A < aM then A - |A x [2k/M]/2FM < 0.
This will take place if a x 2¢/[2k/M]<aM -1, 0ra 2 [(M - 2k/[2k/M])_1]. Finally

we get the bound A 2 A4, = [[(M - 2¢/12% /M) 2% /12% /)

Institute of Information Science, Academia Sinica

Iy,
2

4[27



Barrett Reduction: Approximating Quotients

« ForAmod M = A -]A/MIM (centered), |[A/M] then obviously approximated
JA/M] = [Ax|2R/M]/2F] = (A < |28 /M] + 287 > k. (> is “shift”.)

 Suppose we instead want the unsigned A mod M = A-|A/M]M. Do we want

« |A/M] = |Ax[2F/M]/2R] = (A x| 2R /M]) > k? Then the approximate A mod M is
nonnegative, but returns a noncanonical M instead of 0 if we substitute M.

« Orwe use |A/M] 5 [A x |28 /M]/2%] = (A x[2}/M]) > k? This might return a
negative A mod M. In particular, where A x [2F/M]/2F is just above the integer
a, or A 2 ax 2k /[2% /M), if simultaneously A < aM then A - |A x [2k/M]/2FM < 0.
This will take place if a x 2¢/[2k/M]<aM -1, 0ra 2 [(M - 2k/[2k/M])_1]. Finally
we get the bound A 2 A, = [[(M - 2¢/12%/m] '1]2'? /12 m).

- Example: For M = 4591, k = 32,a = 2161, and A,, = 9921150(< M?).
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Barrett Reduction (examples)

« If M = 4591, k = 32, then M = |2k /M] = 935519
+ 2295 - 4591[935519 x 2295/232] = 2295
* 2296 - 4591|935519 x 2296/232] = -2295

« If M = 4591, k = 32, then M = [2F/M] = 935519
* 4591 - 4591[935519 x 4591/232| = 0
+ 4590 - 4590|935519 x 4590/232] = 4590, but
+ -4591 - 4591|935519 x (-4591)/232| = 4591
* 9921150 - 4591|935519 x 9921150/232| = -1

Note if we instead use [2%/M] = 935518, then we see

« 4591 -4591]|935518 x 4591/23?| = 4591
* 4592 - 4591[935518 x 4592/232| = 1
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Barrett Reduction (CPU-Specific Cases)

« ARMv7e-M has an SMMULR, easy to do centered Barrett on 32 bit
SMMULR(A, B) = (A x B + 23") » 32, so M = [232/M],
and we have |A/M] =~ SMMULR(A, M)
Similarly ARMv7e-M has SMLAWX (x = B, T, Bottom / Top) instruction
SMLAWX(A, B,C) = |Ax B, [2"°] + C, so
£|A, [M] = SMLAWX(xM, A, 2'%) > 16, similarly for unsigned case
|-A /M| ~ SMLAWX(-M, A, 2'®) > 16, where M = [232/M].
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Barrett Reduction (CPU-Specific Cases)

« ARMv7e-M has an SMMULR, easy to do centered Barrett on 32 bit
SMMULR(A, B) = (A x B + 23") » 32, so M = [232/M],
and we have |A/M] =~ SMMULR(A, M)
Similarly ARMv7e-M has SMLAWX (x = B, T, Bottom / Top) instruction
SMLAWX(A, B,C) = |Ax B, [2"°] + C, so
£|A, [M] = SMLAWX(xM, A, 2'%) > 16, similarly for unsigned case
|-A /M| ~ SMLAWX(-M, A, 2'®) > 16, where M = [232/M].
- X86 provides VPMULHRSW, computes (X x Y + 2'*) » 15 (not very accurate.)
* Many architectures has a multiply-return-high Hi (A, B) = |A x B/2%|.
Precompute M’ = [2k/M], where 287 > M > 2%, Then |A/M] = Hi (A, M) > ¢
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Error of Barrett Reductions BAR ,(z) = BARH(Z)
We denote the approximation BARH](z) := z-|z[R/M] /R] for suitable R

A mod M =A-|A/MIM, BAR,,(A) = A - [A[2% /M]/2FM

- Let e, = M[2R/M]/2k -1, €, =[A[2R/M]/2F| - A2k IM1/2%, €, = A/M - [A[M]
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- Let e, = M[2R/M]/2k -1, €, =[A[2R/M]/2F| - A2k IM1/2%, €, = A/M - [A[M]

Error = A mod M - BAR,,(A) = M(TA[2® [M]/ 28] - [A/M])
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We denote the approximation BARH](z) := z-|z[R/M] /R] for suitable R

A mod M =A-|A/MIM, BAR,,(A) = A - [A[2% /M]/2FM

- Let e, = M[2R/M]/2k -1, €, =[A[2R/M]/2F| - A2k IM1/2%, €, = A/M - [A[M]

Error = A mod M - BAR,,(A) = M(TA[2® [M]/ 28] - [A/M])
= M ((TAL2"%/M1/2") - AT2R [ m][2F) + (AL2% [ M1/2"% - [AM]))
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Error of Barrett Reductions BAR ,(z) = BARH(Z)
We denote the approximation BARH](z) := z-|z[R/M] /R] for suitable R

A mod M =A-|A/MIM, BAR,,(A) = A - [A[2% /M]/2FM
- Lete, = M[2%/M]/2% - 1, €, = [A[2%/M]/2k] - A[2F IM]/2%, €, =AM - |A/M]
Error = A mod M - BAR,,(A) = M(TA[2® [M]/ 28] - [A/M])

M ((TAL2"%/M1/2") - AT2R [ m][2F) + (AL2% [ M1/2"% - [AM]))
M(e, + (AL2% /M1/28 - AIM) + (A/M - [AIM))) = M(€, + €,) + A€,

« The first (two) terms are random errors and the last is a steady “drift” term.
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Writing Down Explicit Extreme values of BAR ,(A)

« We compute where, just before A, A|2F /M]/2F last straddles a half-integer,
which is A = (JA|28/M]/2% + 0.5] - 0.5) - 2k /| 2% /M], or its [ 1 and | ], to compute
the codomain, just computes the extremum value from
{BAR,,(A), BAR,,([A]), BAR,,(IA]), BAR,(l-A]), BAR,,([-A]), BAR,,(-A)}
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k=32, A=23, M=4591 is %2512

k=32, A=2%2 M=4591 is #2721
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Writing Down Explicit Extreme values of BAR ,(A)

« We compute where, just before A, A|2F /M]/2F last straddles a half-integer,
which is A = (JA[2%/M]/2% + 0.5] - 0.5) - 2k /| 2k /m], or its [ 1 and | |, to compute
the codomain, just computes the extremum value from

{BAR,,(A), BAR,,([A]), BAR,,(IA]), BAR,(l-A]), BAR,,([-A]), BAR,,(-A)}

« Example: range of Barrett reduction for

k=32, A=23, M=4591 is %2512

k=32, A=2%2 M=4591 is #2721

k=15 A=2", M=4591 is +2881

- Similarly, for unsigned Barrett, we find A = |A[2%/M]/2F] - 2% /[2%/M] and
proceed similarly with the points A, [A],|A], [-A], |-A], -A.
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Range where Signed Barrett Reduction is Canonical

The max |A| when BAR,,(A) = A - |A|2%/M]/2*] is guaranteed to = A - |A/M|M?
- for A/M and [A[2%/M]/2"] to agree, we just need
6 := |A/M - A2k /M1/2F]| < 1/(2m)

because |-] only changes value at Z + %

Institute of Information Science, Academia Sinica

9/27



Range where Signed Barrett Reduction is Canonical

The max |A| when BAR,,(A) = A - |A|2%/M]/2*] is guaranteed to = A - |A/M|M?
- for A/M and [A[2%/M]/2"] to agree, we just need
6 := |A/M - A2k /M1/2F]| < 1/(2m)
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Range where Signed Barrett Reduction is Canonical

The max |A| when BAR,,(A) = A - |A|2%/M]/2*] is guaranteed to = A - |A/M|M?
- for A/M and [A[2%/M]/2"] to agree, we just need
6 := |A/M - A2k /M1/2F]| < 1/(2m)

because |-] only changes value at Z + %
- 6<(A/28)|[2*/mM1-2%/M| = (A/M)|g, ], therefore
BAR,,(A) = A mod M is guaranteed if A < 1/(2|g,1).
Example: Barrett reduction is canonical for
k=32, M=4591 then &,=101x10"7, As5x10°

k=31, M=4591 then ¢&,=-0.97x107, As5x10°
- for unsigned Barrett we often don’t have such luxuries.
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Montgomery Reduction (Signed, for M odd)

« We want A mod M, but Barrett reduction requires full-length (double-length,
depending on PoV) multiplications, can we do better?
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« We want A mod M, but Barrett reduction requires full-length (double-length,
depending on PoV) multiplications, can we do better?

« Answer by Peter Montgomery: let's compute not A mod M, but A/R mod M,
where R is something that is easy to divide by (typically power of 2)

« Compute M’ = 1/M mod R given A, compute £ = AM" mod R
(as (A mod R)M' mod R) then M = AM'M = A (mod R)

Institute of Information Science, Academia Sinica

Y,
,~

10/27



Montgomery Reduction (Signed, for M odd)

« We want A mod M, but Barrett reduction requires full-length (double-length,
depending on PoV) multiplications, can we do better?

« Answer by Peter Montgomery: let's compute not A mod M, but A/R mod M,
where R is something that is easy to divide by (typically power of 2)

« Compute M’ = 1/M mod R given A, compute £ = AM" mod R
(as (A mod R)M' mod R) then M = AM'M = A (mod R)

« So we compute A - IM, this is divisible by R, hence, (A-#M)/R = A/R (mod M)
because (A-eM)/R-R=A-¢M =A (mod M), and gcd(M,R) = 1
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Montgomery Reduction (Signed, for M odd)

« We want A mod M, but Barrett reduction requires full-length (double-length,
depending on PoV) multiplications, can we do better?

« Answer by Peter Montgomery: let's compute not A mod M, but A/R mod M,
where R is something that is easy to divide by (typically power of 2)

« Compute M’ = 1/M mod R given A, compute £ = AM’ mod R
(as (A mod R)M" mod R) then #M = AM'M = A (mod R)

« So we compute A - IM, this is divisible by R, hence, (A-#M)/R = A/R (mod M)
because (A-M)/R-R=A-fM = A (mod M), and gcd(M,R) = 1
* For (A -¥fM)/R we need not the bottom half of #M, just the top half.

Institute of Information Science, Academia Sinica

Iy,
2

10/27



Examples of (Signed) Montgomery Reduction

+ Let M = 83,R = 100, Now we wish to compute the (signed) Montgomery
reduction of A = 6412. We know that M" = 1/M mod R = 47. now
?=(A mod R)M" mod R = 12 x 47 mod 100 = -36 (centered or lifted mod).
A-M = 6412 - (-36) x 83 = 6412 - (-2988) = 9400, SO We get 94.
+ Montgomery does not guarantee the canonical value: 6412 = 1100 (mod 83).
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« Suppose we want the Montgomery reduction of A = 3322, then
£=22x47 mod 100 = 34, and A - #M = 3322 - 34 x 87 = 500, and we get 5.
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Examples of (Signed) Montgomery Reduction

+ Let M = 83,R = 100, Now we wish to compute the (signed) Montgomery
reduction of A = 6412. We know that M’ = 1/M mod R = 47. now
?=(A mod R)M" mod R = 12 x 47 mod 100 = -36 (centered or lifted mod).
A-EM = 6412 - (-36) x 83 = 6412 - (-2988) = 9400, SO we get 94.
« Montgomery does not guarantee the canonical value: 6412 = 1100 (mod 83).
« Suppose we want the Montgomery reduction of A = 3322, then
£=22x47 mod 100 = 34, and A - #M = 3322 - 34 x 87 = 500, and we get 5.
« M’ is computable on the fly via Hensel Lifting:
* Say M = 47,R =256 = 28, for x = 1/M (mod 256), set x, = 1 = x (mod 2), then

2Xy - XgM = -45=-1=x (mod &); X, 22X, -xiM=-1=x (mod 16);

X

2%, - x2M = -49 = x  (mod 256).

X3
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Unsigned (Original) Montgomery Reduction
« Ais unsigned: now we let M’ = -1/M (mod R)

£=M(AmodR)modR,soA+fM=0 (mod R)
hence (A+fM)/R =A/R (mod M)
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Unsigned (Original) Montgomery Reduction

« Ais unsigned: now we let M’ = -1/M (mod R)
£=M(AmodR)modR,soA+fM=0 (mod R)
hence (A+fM)/R =A/R (mod M)

 Suppose we wish to compute the unsigned Montgomery Reduction of 6412
and 3322 as above, then M" = -1/M mod R = 53.

 The reduction of 6412 is (6412 + (53 x 12 mod 100) x 83)/100 = 94 as before.
+ The reduction of 3322 is 3322 + (53 x 22 mod 100) x 83 = 88 # 5.
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Unsigned (Original) Montgomery Reduction

« Ais unsigned: now we let M’ = -1/M (mod R)
£=M(AmodR)modR,soA+fM=0 (mod R)
hence (A+fM)/R =A/R (mod M)

 Suppose we wish to compute the unsigned Montgomery Reduction of 6412
and 3322 as above, then M" = -1/M mod R = 53.

 The reduction of 6412 is (6412 + (53 x 12 mod 100) x 83)/100 = 94 as before.
+ The reduction of 3322 is 3322 + (53 x 22 mod 100) x 83 = 88 # 5.

* Pros and Cons:

« pluses: deals with unsigned numbers, so can do multiprecision
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Unsigned (Original) Montgomery Reduction

« Ais unsigned: now we let M’ = -1/M (mod R)
£=M(AmodR)modR,soA+fM=0 (mod R)
hence (A+fM)/R =A/R (mod M)

 Suppose we wish to compute the unsigned Montgomery Reduction of 6412
and 3322 as above, then M" = -1/M mod R = 53.

 The reduction of 6412 is (6412 + (53 x 12 mod 100) x 83)/100 = 94 as before.
+ The reduction of 3322 is 3322 + (53 x 22 mod 100) x 83 = 88 # 5.

* Pros and Cons:

« pluses: deals with unsigned numbers, so can do multiprecision
« minuses: larger numbers, full-length addition for A + M
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Range under Montgomery Reduction (heretofore “MR")

« IMR(A)| = |(A-EM)|/R < |A/R| + M|2/R| < |A|/R+M/2
since we can compute in signed mod (centered mod)
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Range under Montgomery Reduction (heretofore “MR")

« IMR(A)| = |(A-EM)|/R < |A/R| + M|2/R| < |A|/R+M/2
since we can compute in signed mod (centered mod)

« Corollary: for |A| < RM/2, [IMR(A)| <M
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Range under Montgomery Reduction (heretofore “MR")

« IMR(A)| = |(A-EM)|/R < |A/R| + M|2/R| < |A|/R+M/2
since we can compute in signed mod (centered mod)

« Corollary: for |A| < RM/2, [IMR(A)| <M

- for unsigned Montgomery (we use M’ = -1/M mod R instead) and compute

IMR(A)| = |[A+2M]|/R < |A/R| + ME/R
< |Al/R+M < 2M, provided that A < RM.

Institute of Information Science, Academia Sinica 13/27




Y,
,~

Range under Montgomery Reduction (heretofore “MR")

IMR(A)| = [(A-2M)|/R < |A/R| + M|2/R]| < |A|/R+M/2
since we can compute in signed mod (centered mod)

Corollary: for |A] < RM/2, |[MR(A)| <M

for unsigned Montgomery (we use M’ = -1/M mod R instead) and compute

IMR(A)| = |[A+2M]|/R < |A/R| + ME/R
< |Al/R+M < 2M, provided that A < RM.

Note: bounds are smaller than M and 2M when A is smaller.
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Montgomery Multiplication (1)

« if bis known, then we compute ab by computing MR(a - (bR mod M))
where bR mod M is precomputed.
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Montgomery Multiplication (1)

« if bis known, then we compute ab by computing MR(a - (bR mod M))

where bR mod M is precomputed.

- On architectures where "top half of products” and "bottom half of products
are separate, we can even optimize to (all mods here are mod®, centered).

”

Mont,(a, b) = MR(a - (bR mod M))
= [a(bR mod M) - ((a - (bR mod M) mod R)-M" mod R) - M]/R
=[a-(bR mod M)-M-(a-M"-(bR" mod M) mod R)]/R
= Mulhi[aB] - Mulhi[M - Mullo[aB']]
where B = (bR mod M), B’ = (BM’ mod R)

Institute of Information Science, Academia Sinica
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Montgomery Multiplication (2)

Equivalence of Montgomery Reduction with Barrett Reduction

[[ﬂ mod’ R = (~(R mod!! M) - (M~ mod* R)) mod"* R
Proof: M [[ﬂ - R- R mod!! M, take mod* R and multiply by M~" mod* R
BARL(Z) = MR(2(R mod!! M), in particular BAR,,(2) = MR(z(R mod* M))
BARL(z) = z—Mlz 5 ]=z—%(zﬂ%ﬂ—(z[{%ﬂ)mod*R)
z- %{zm [[R]] M[(-z(R mod"! M) (M~ mod* R)) mod* R]}

%{Z(R modl! M)+ m [—z(R modl! M)(M~" mod* R) mod* R]}

Institute of Information Science, Academia Sinica
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Montgomery Multiplication (2, Continued)

Equivalence of Montgomery Multiplication with Barrett Multiplication

BARL(A, B) := AB - M A Hﬁﬂ] - MR(A(BR mod!! m))

Note that H H mod*R = ( (BR modl! M- (M~ mod* R)) mod* R as above.

0

BARy(A, B) = AB-M[AH%]H:AB-M(A[[BR]] (A[[BR]])mod*R

R M M

R M
1 BR - (BR modl! m)
A-—{AM i

1
R

Institute of Information Science, Academia Sinica

AB - X {AM [[BRH - M[(-ABR mod!! M) - (M~ mod* R)) mod® R

- m[(-ABR mod ! m)(M~" mod* R)) mod® R]

— —— )~

{a(BR mod! M) + M [-A(BR mod' ! m)(M~" mod* R)mod* R
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Montgomery Multiplication (2)

Now, we can do the following: (denote B” = (B'M - B) > 32):

MM(ab)

Muthi(aB) - Mulhi(M - Mullo(aB"))

= [aB/R]-[M(aB’ mod*R) /R]

= [aB/R]-[M(aB’ -[aB’/R]R) /R]

= [aB/R|-[aB'M/[R]+M[aB'[R]

= -a-(B'M-B)/R+M-[aB'[R]=-aB" +M-[aB'[R]

which is bounded in absolute value by |a||B|/R+M/2 < |a|/2+M[2if |B| < R/2.

Institute of Information Science, Academia Sinica
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The reason for doing this

But, why? Certain microarchitectures can do both [aB’/R], and
multiply-and-accumulate. Example: ARM’s NEON has SQRDMULH(x, y) = [xy /23]
so [aB’/R] = SQRDMULH(a, B’ /2) if we take care to pick B (and hence B’) even. Note

that

*« B" =MR(-B) =-B/R = -b (mod M).
« [bR/M] = -B’. Because

[bR/M]| = (bR -B)/M=-B/M=-BM =-B" (mod R).

But B’ € [-R/2,R/2) and so is [bR/M].

Institute of Information Science, Academia Sinica 18/27
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Montgomery Multiplication (2): Equivalence to Barrett

BAR,,(ab) = ab - M[ab[R/M|/R] = ab - M[a[bR/M]/R| = -aB" + M[aB' [R].
Can we prove that the two are equivalent? We can because B = bR mod* M.

* Given B” = (B'M - B)/R is the same as MR(-B) = -B/R = -b (mod M), we know
that B” is a representative of -b (mod M). But which? B"R = B'M - B, where
|B| <M, soif |B’'| <R/2, max of |B”| is
((R/I2-1M+M-1)/R=(RM[2-1)/R <M/2. Butif B = -R/2, then from
B’ = BM’ mod* R and M’ being odd we know that B = -R/2 (mod R), which is
impossible when R > M and B = bR mod* M, Therefore -b = B” when
|b| < M/2.

Institute of Information Science, Academia Sinica 19/27
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Wy,

[Becker et al CHES 2022] Barrett (Signed Shoup) Multiplication
BAR (A, B) := AB - |A [B - 2¢/M] /2¥]M, we omit B if 1, this is Barrett Reduction if B = 1and [ := ||

Barrett Multiplication, a recap
Let M € N be odd and A, B € Z with |A], |B| < 2" for £ € {16, 32}. Moreover, let

[-] : @ -» Z be any integer approximation, i.e. |[x - [x] | < 1 for all x € Q, and put
t mod IM :=t-q[t/q] and BARE}(A, B)=AB-M lA [[BTZk]] /2k]. Then for R := 2k,

I < ABRmod! T m)

R
|BARu(A, B)| < AERmod_M) , R

Accuracy for (Rounding) Barrett Multiplication
Take max h with € := [[BR/M]-BR/M| < 27", and R := 2 where
R :=(2- 1) +|log, M] - [log, | B[], then BAR}I(A, B) = AB mod®* M, if

logz |A| < (f_ 1)_ [logz |B|] _(h - 1)

Institute of Information Science, Academia Sinica
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(Signed) Plantard Multiplication
Useful only on an ARM Cortex-M4 with SMULWx, SMLAWx

We denote by [A]f and [A], the numbers |A/2%] and A mod* 2! respectively.
[Huang et al CHES 2022] Algorithm for odd positive g (positive integer o)
Input: signed integers a,b € [-G2%,G2°]. g <2*% 7, q" = g7 mod* 2%.

¢
Output: ¢ = [([[abq’]zf]y + 2"‘) q] , € = ab(-2"%) mod* q where ¢ € (-1, )

cs|@-1+2%g/2 = |(g-1)/2+(1/2+ (2% - 1)q/2")| = lg/2]

let p = abg™ mod* 2%, p, = l%] p, = p - p,2%, then if 0 < g2% - p q + ab < 2%,

d P+a _ .
then ab(-22%) "=  (pq - ab)/2? = lpq'ab + Dol abJ = |(p, +2%)q/2"| = c. But

22¢ 22¢
0<q (2" -2%) < q(2"*-2"-q2*") < q2"* - p,q + ab < q2"* + ab < (3/4)2%,

Institute of Information Science, Academia Sinica
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(Signed) Plantard Multiplication (how to see it)

Alt. Algorithm for odd positive g (and positive integer G > 1s.t.Gg < 2°")
Input: signed integers a,b € [-qG,qq]. ¢’ = g”' mod* 2%,

?
Output: c = [([[GbCI']zg]y + 51) Q] , € = ab(-2"%) mod* q where c € (-1, )

let p = abg™" mod* 2%, p, = [%J e[-2F% 207 - 1), py=p- p121’ e[0;2° - 1].

b- b- .
So -ab27? = (pg - ab) /2% = p1q az# (mod q). p1q ( %;%),and 2 ZZ,"Q is

ab- p0q+qq2

small. So e f)q is —3 € [0; %] away from what we want, because
1..94_ . 9G-2""+q-32""  ¢’¢*+q2" _ab-pq ab 4’3 1
— g < - < - < < — < < —
2 20 220 22¢ 220 220 220 4
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Summary of Modular Reductions and multiplications

« Montgomery Reduction/Multiplication: computes a scaled result
+ 2 high and one low multiplications, when multiplications are split.
« with a long MADD, can accumulate-then-reduce (Kyber point mul, Dilithium)
« Barrett Reduction: return final exact results, need full-length mul
- Barrett Multiplication: computes an exact result
+ 2 low and one high multiplications when multiplications are split.
+ can combine with additions or subtractions.
« more useful for vectorized operations or the M3
« Plantard Multiplication: computes a scaled result
+ need multiply single-by-two-limbs-return-middle (Kyber NTT)

2
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Here Endth the Reductions Part

Any Questions?
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Original Montgomery Formulation

- Suppose we define X" = XR mod M, so
a™ = aR mod M, b™) = bR mod M, c™) = cR mod M, etc.
then if we wish to compute ¢ = ab, the Montgomery reduction of a™b™ is

MM(a™), b™M) := MR(a™bM) = aMpM) R = abR = ¢™),

and a™ + p™ = M)

I,
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Original Montgomery Formulation

- Suppose we define X" = XR mod M, so
a™ = aR mod M, b™) = bR mod M, c™) = cR mod M, etc.
then if we wish to compute ¢ = ab, the Montgomery reduction of a™b™ is

MM(a™), b™M) := MR(a™bM) = aMpM) R = abR = ¢™),

and a™ + p™ = M)

- So we may make all our computations this way, we call a™
"a in Montgomery Domain”.

I,
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Original Montgomery Formulation

- Suppose we define X" = XR mod M, so
a™ = aR mod M, b™) = bR mod M, c™) = cR mod M, etc.
then if we wish to compute ¢ = ab, the Montgomery reduction of a™b™ is

MM(a™), b™M) := MR(a™bM) = aMpM) R = abR = ¢™),

and a™ + p™ = M)
- So we may make all our computations this way, we call a™
"a in Montgomery Domain”.

- To compute a™, compute the Montgomery reduction of a(R?> mod M)
(We can precompute R% mod M)

Y,
,~
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Montgomery Multiplication Mod an Even Number

Suppose gcd(M, R) # 1, usually R = 2% so this means an even number (the method
below can be extended if R is even more composite).

-« Want ab mod M while M = 2tu, u is odd, u’ = 1/u mod R,R = 2'°
B = bR mod M, so M|(B - bR) hence 2!|(B - bR)

B' = u'[E£X%] mod R

I,
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Montgomery Multiplication Mod an Even Number

Suppose gcd(M, R) # 1, usually R = 2% so this means an even number (the method
below can be extended if R is even more composite).

-« Want ab mod M while M = 2tu, u is odd, u’ = 1/u mod R,R = 2'°
B = bR mod M, so M|(B - bR) hence 2!|(B - bR)

B' = u'[E£X%] mod R

+ to compute ab mod M, first compute £ = aB’ mod R,
then ab mod M = (aB - M)/R mod M
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Montgomery Multiplication Mod an Even Number

Suppose gcd(M, R) # 1, usually R = 2% so this means an even number (the method
below can be extended if R is even more composite).

-« Want ab mod M while M = 2tu, u is odd, u’ = 1/u mod R,R = 2'°
B = bR mod M, so M|(B - bR) hence 2!|(B - bR)

B' = u'[E£X%] mod R

+ to compute ab mod M, first compute £ = aB’ mod R,
then ab mod M = (aB - M)/R mod M
+ Note: Need aB = #M (mod R) < aB/2! = fu (mod R/2!). But this is true since
B’ = u’'B/2! (mod R/2).

Y,
,~
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Montgomery Multiplication Mod an Even Number (cont'd)

« first, B = bR mod u, so aB = abR (mod u), aB - M = abR (mod u) so
(aB - EtM)/R = ab (mod u)
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Montgomery Multiplication Mod an Even Number (cont'd)

« first, B = bR mod u, so aB = abR (mod u), aB - M = abR (mod u) so
(aB - EtM)/R = ab (mod u)

- second, we want (aB - #M)/R = ab (mod 2%), or aB - M = abR (mod 2¢R)
(Reminder: a=b (mod m) & ac = bc (mod cm))
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Montgomery Multiplication Mod an Even Number (cont'd)

« first, B = bR mod u, so aB = abR (mod u), aB - M = abR (mod u) so
(aB - EtM)/R = ab (mod u)

- second, we want (aB - #M)/R = ab (mod 2%), or aB - M = abR (mod 2¢R)
(Reminder: a=b (mod m) & ac = bc (mod cm))

« since £ = aB’ (mod R) & M = aB'M (mod RM), thus = aB’M (mod 2'R)
so all we need is aB - aB’M = abR (mod 2'R) Va, or B-B'M = bR (mod 2'R)
or B-bR=B'M (mod 2tR)

Iy,
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Montgomery Multiplication Mod an Even Number (cont'd)

« first, B = bR mod u, so aB = abR (mod u), aB - M = abR (mod u) so
(aB - EtM)/R = ab (mod u)

- second, we want (aB - #M)/R = ab (mod 2%), or aB - M = abR (mod 2¢R)
(Reminder: a=b (mod m) & ac = bc (mod cm))

« since £ = aB’ (mod R) & M = aB'M (mod RM), thus = aB’M (mod 2'R)
so all we need is aB - aB’M = abR (mod 2'R) Va, or B-B'M = bR (mod 2'R)
or B-bR=B'M (mod 2tR)

« butB’ = u’(B'ztt’R) (mod R) or 2 = uB’ = (B;?R) (mod R)
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