
Short-Limb Multiplication Techniques
(Montgomery, Barrett…)

Bo-Yin Yang (with Matthias Kannwischer)

June 8, 2023 at Vodice
1/27

Institute of Information Science, Academia Sinica

Modular Reductions

Barrett Reductions

Hensel Remainders and Montgomery Variations

2023.06.08 BY Yang, M Kannwischer 2/27

Institute of Information Science, Academia Sinica

Modular Reductions

Many cryptographic programs need 𝐴 mod 𝑀, most often for a known 𝑀.

• For RSA and ECC, usually the numbers are multi-limb and unsigned.

• For postquantum cryptography (PQC) they are often single limb and signed.
• Often it is not necessarily that we have an exact 𝐴 mod 𝑀, anything small
that we can continue to compute with is okay.

• At the end of the computation the canonical form is needed.

• There are two classes of approaches:
Approximate Quotients: try straightforwardly to approximate 𝐴 ÷ 𝑀
Hensel Remainders: …find exactly 𝐴𝑅 mod 𝑀 for some 𝑅 (see below)

2023.06.08 BY Yang, M Kannwischer 3/27

Institute of Information Science, Academia Sinica

Barrett Reduction: Approximating Quotients

• For 𝐴 mod 𝑀 = 𝐴 − ⌊𝐴/𝑀⌉𝑀 (centered), ⌊𝐴/𝑀⌉ then obviously approximated

⌊𝐴/𝑀⌉ ≒ ⌊𝐴 × ⌊2𝑘/𝑀⌉/2𝑘⌉ = (𝐴 × ⌊2𝑘/𝑀⌉ + 2𝑘−1) ≫ 𝑘. (≫ is “shift”.)

• Suppose we instead want the unsigned 𝐴 mod 𝑀 = 𝐴 − ⌊𝐴/𝑀⌋𝑀. Do we want

• ⌊𝐴/𝑀⌋ ≒ ⌊𝐴 × ⌊2𝑘/𝑀⌋/2𝑘⌋ = (𝐴 × ⌊2𝑘/𝑀⌋) ≫ 𝑘? Then the approximate 𝐴 mod 𝑀 is
nonnegative, but returns a noncanonical 𝑀 instead of 0 if we substitute 𝑀.

• Or we use ⌊𝐴/𝑀⌋ ≒ ⌊𝐴 × ⌊2𝑘/𝑀⌉/2𝑘⌉ = (𝐴 × ⌈2𝑘/𝑀⌉) ≫ 𝑘? This might return a
negative 𝐴 mod 𝑀. In particular, where 𝐴 × ⌈2𝑘/𝑀⌉/2𝑘 is just above the integer
𝑎, or 𝐴 ≳ 𝑎 × 2𝑘/⌈2𝑘/𝑀⌉, if simultaneously 𝐴 < 𝑎𝑀 then 𝐴 − ⌊𝐴 × ⌊2𝑘/𝑀⌉/2𝑘⌉𝑀 < 0.
This will take place if 𝑎 × 2𝑘/⌈2𝑘/𝑀⌉ < 𝑎𝑀 − 1, or 𝑎 ≥ ⌈(𝑀 − 2𝑘/⌈2𝑘/𝑀⌉)−1⌉. Finally
we get the bound 𝐴 ≥ 𝐴𝑀 = ⌈⌈(𝑀 − 2𝑘/⌈2𝑘/𝑀⌉)

−1⌉ 2𝑘/⌈2𝑘/𝑀⌉⌉.

• Example: For 𝑀 = 4591, 𝑘 = 32, 𝑎 = 2161, and 𝐴𝑀 = 9921150(< 𝑀2).

• When out of bounds, needs to adjust (usually) by ±𝑀.

2023.06.08 BY Yang, M Kannwischer 4/27

Institute of Information Science, Academia Sinica

Barrett Reduction: Approximating Quotients

• For 𝐴 mod 𝑀 = 𝐴 − ⌊𝐴/𝑀⌉𝑀 (centered), ⌊𝐴/𝑀⌉ then obviously approximated

⌊𝐴/𝑀⌉ ≒ ⌊𝐴 × ⌊2𝑘/𝑀⌉/2𝑘⌉ = (𝐴 × ⌊2𝑘/𝑀⌉ + 2𝑘−1) ≫ 𝑘. (≫ is “shift”.)

• Suppose we instead want the unsigned 𝐴 mod 𝑀 = 𝐴 − ⌊𝐴/𝑀⌋𝑀. Do we want

• ⌊𝐴/𝑀⌋ ≒ ⌊𝐴 × ⌊2𝑘/𝑀⌋/2𝑘⌋ = (𝐴 × ⌊2𝑘/𝑀⌋) ≫ 𝑘? Then the approximate 𝐴 mod 𝑀 is
nonnegative, but returns a noncanonical 𝑀 instead of 0 if we substitute 𝑀.

• Or we use ⌊𝐴/𝑀⌋ ≒ ⌊𝐴 × ⌊2𝑘/𝑀⌉/2𝑘⌉ = (𝐴 × ⌈2𝑘/𝑀⌉) ≫ 𝑘? This might return a
negative 𝐴 mod 𝑀. In particular, where 𝐴 × ⌈2𝑘/𝑀⌉/2𝑘 is just above the integer
𝑎, or 𝐴 ≳ 𝑎 × 2𝑘/⌈2𝑘/𝑀⌉, if simultaneously 𝐴 < 𝑎𝑀 then 𝐴 − ⌊𝐴 × ⌊2𝑘/𝑀⌉/2𝑘⌉𝑀 < 0.
This will take place if 𝑎 × 2𝑘/⌈2𝑘/𝑀⌉ < 𝑎𝑀 − 1, or 𝑎 ≥ ⌈(𝑀 − 2𝑘/⌈2𝑘/𝑀⌉)−1⌉. Finally
we get the bound 𝐴 ≥ 𝐴𝑀 = ⌈⌈(𝑀 − 2𝑘/⌈2𝑘/𝑀⌉)

−1⌉ 2𝑘/⌈2𝑘/𝑀⌉⌉.

• Example: For 𝑀 = 4591, 𝑘 = 32, 𝑎 = 2161, and 𝐴𝑀 = 9921150(< 𝑀2).

• When out of bounds, needs to adjust (usually) by ±𝑀.

2023.06.08 BY Yang, M Kannwischer 4/27

Institute of Information Science, Academia Sinica

Barrett Reduction: Approximating Quotients

• For 𝐴 mod 𝑀 = 𝐴 − ⌊𝐴/𝑀⌉𝑀 (centered), ⌊𝐴/𝑀⌉ then obviously approximated

⌊𝐴/𝑀⌉ ≒ ⌊𝐴 × ⌊2𝑘/𝑀⌉/2𝑘⌉ = (𝐴 × ⌊2𝑘/𝑀⌉ + 2𝑘−1) ≫ 𝑘. (≫ is “shift”.)

• Suppose we instead want the unsigned 𝐴 mod 𝑀 = 𝐴 − ⌊𝐴/𝑀⌋𝑀. Do we want
• ⌊𝐴/𝑀⌋ ≒ ⌊𝐴 × ⌊2𝑘/𝑀⌋/2𝑘⌋ = (𝐴 × ⌊2𝑘/𝑀⌋) ≫ 𝑘? Then the approximate 𝐴 mod 𝑀 is
nonnegative, but returns a noncanonical 𝑀 instead of 0 if we substitute 𝑀.

• Or we use ⌊𝐴/𝑀⌋ ≒ ⌊𝐴 × ⌊2𝑘/𝑀⌉/2𝑘⌉ = (𝐴 × ⌈2𝑘/𝑀⌉) ≫ 𝑘? This might return a
negative 𝐴 mod 𝑀. In particular, where 𝐴 × ⌈2𝑘/𝑀⌉/2𝑘 is just above the integer
𝑎, or 𝐴 ≳ 𝑎 × 2𝑘/⌈2𝑘/𝑀⌉, if simultaneously 𝐴 < 𝑎𝑀 then 𝐴 − ⌊𝐴 × ⌊2𝑘/𝑀⌉/2𝑘⌉𝑀 < 0.
This will take place if 𝑎 × 2𝑘/⌈2𝑘/𝑀⌉ < 𝑎𝑀 − 1, or 𝑎 ≥ ⌈(𝑀 − 2𝑘/⌈2𝑘/𝑀⌉)−1⌉. Finally
we get the bound 𝐴 ≥ 𝐴𝑀 = ⌈⌈(𝑀 − 2𝑘/⌈2𝑘/𝑀⌉)

−1⌉ 2𝑘/⌈2𝑘/𝑀⌉⌉.

• Example: For 𝑀 = 4591, 𝑘 = 32, 𝑎 = 2161, and 𝐴𝑀 = 9921150(< 𝑀2).

• When out of bounds, needs to adjust (usually) by ±𝑀.

2023.06.08 BY Yang, M Kannwischer 4/27

Institute of Information Science, Academia Sinica

Barrett Reduction: Approximating Quotients

• For 𝐴 mod 𝑀 = 𝐴 − ⌊𝐴/𝑀⌉𝑀 (centered), ⌊𝐴/𝑀⌉ then obviously approximated

⌊𝐴/𝑀⌉ ≒ ⌊𝐴 × ⌊2𝑘/𝑀⌉/2𝑘⌉ = (𝐴 × ⌊2𝑘/𝑀⌉ + 2𝑘−1) ≫ 𝑘. (≫ is “shift”.)

• Suppose we instead want the unsigned 𝐴 mod 𝑀 = 𝐴 − ⌊𝐴/𝑀⌋𝑀. Do we want
• ⌊𝐴/𝑀⌋ ≒ ⌊𝐴 × ⌊2𝑘/𝑀⌋/2𝑘⌋ = (𝐴 × ⌊2𝑘/𝑀⌋) ≫ 𝑘? Then the approximate 𝐴 mod 𝑀 is
nonnegative, but returns a noncanonical 𝑀 instead of 0 if we substitute 𝑀.

• Or we use ⌊𝐴/𝑀⌋ ≒ ⌊𝐴 × ⌊2𝑘/𝑀⌉/2𝑘⌉ = (𝐴 × ⌈2𝑘/𝑀⌉) ≫ 𝑘? This might return a
negative 𝐴 mod 𝑀. In particular, where 𝐴 × ⌈2𝑘/𝑀⌉/2𝑘 is just above the integer
𝑎, or 𝐴 ≳ 𝑎 × 2𝑘/⌈2𝑘/𝑀⌉, if simultaneously 𝐴 < 𝑎𝑀 then 𝐴 − ⌊𝐴 × ⌊2𝑘/𝑀⌉/2𝑘⌉𝑀 < 0.
This will take place if 𝑎 × 2𝑘/⌈2𝑘/𝑀⌉ < 𝑎𝑀 − 1, or 𝑎 ≥ ⌈(𝑀 − 2𝑘/⌈2𝑘/𝑀⌉)−1⌉. Finally
we get the bound 𝐴 ≥ 𝐴𝑀 = ⌈⌈(𝑀 − 2𝑘/⌈2𝑘/𝑀⌉)

−1⌉ 2𝑘/⌈2𝑘/𝑀⌉⌉.

• Example: For 𝑀 = 4591, 𝑘 = 32, 𝑎 = 2161, and 𝐴𝑀 = 9921150(< 𝑀2).
• When out of bounds, needs to adjust (usually) by ±𝑀.

2023.06.08 BY Yang, M Kannwischer 4/27

Institute of Information Science, Academia Sinica

Barrett Reduction: Approximating Quotients

• For 𝐴 mod 𝑀 = 𝐴 − ⌊𝐴/𝑀⌉𝑀 (centered), ⌊𝐴/𝑀⌉ then obviously approximated

⌊𝐴/𝑀⌉ ≒ ⌊𝐴 × ⌊2𝑘/𝑀⌉/2𝑘⌉ = (𝐴 × ⌊2𝑘/𝑀⌉ + 2𝑘−1) ≫ 𝑘. (≫ is “shift”.)

• Suppose we instead want the unsigned 𝐴 mod 𝑀 = 𝐴 − ⌊𝐴/𝑀⌋𝑀. Do we want
• ⌊𝐴/𝑀⌋ ≒ ⌊𝐴 × ⌊2𝑘/𝑀⌋/2𝑘⌋ = (𝐴 × ⌊2𝑘/𝑀⌋) ≫ 𝑘? Then the approximate 𝐴 mod 𝑀 is
nonnegative, but returns a noncanonical 𝑀 instead of 0 if we substitute 𝑀.

• Or we use ⌊𝐴/𝑀⌋ ≒ ⌊𝐴 × ⌊2𝑘/𝑀⌉/2𝑘⌉ = (𝐴 × ⌈2𝑘/𝑀⌉) ≫ 𝑘? This might return a
negative 𝐴 mod 𝑀. In particular, where 𝐴 × ⌈2𝑘/𝑀⌉/2𝑘 is just above the integer
𝑎, or 𝐴 ≳ 𝑎 × 2𝑘/⌈2𝑘/𝑀⌉, if simultaneously 𝐴 < 𝑎𝑀 then 𝐴 − ⌊𝐴 × ⌊2𝑘/𝑀⌉/2𝑘⌉𝑀 < 0.
This will take place if 𝑎 × 2𝑘/⌈2𝑘/𝑀⌉ < 𝑎𝑀 − 1, or 𝑎 ≥ ⌈(𝑀 − 2𝑘/⌈2𝑘/𝑀⌉)−1⌉. Finally
we get the bound 𝐴 ≥ 𝐴𝑀 = ⌈⌈(𝑀 − 2𝑘/⌈2𝑘/𝑀⌉)

−1⌉ 2𝑘/⌈2𝑘/𝑀⌉⌉.
• Example: For 𝑀 = 4591, 𝑘 = 32, 𝑎 = 2161, and 𝐴𝑀 = 9921150(< 𝑀2).

• When out of bounds, needs to adjust (usually) by ±𝑀.
2023.06.08 BY Yang, M Kannwischer 4/27

Institute of Information Science, Academia Sinica

Barrett Reduction (examples)

• If 𝑀 = 4591, 𝑘 = 32, then 𝑀 = ⌊2𝑘/𝑀⌉ = 935519
• 2295 − 4591⌊935519 × 2295/232⌉ = 2295
• 2296 − 4591⌊935519 × 2296/232⌉ = −2295

• If 𝑀 = 4591, 𝑘 = 32, then 𝑀̃ = ⌈2𝑘/𝑀⌉ = 935519
• 4591 − 4591⌊935519 × 4591/232⌋ = 0
• 4590 − 4590⌊935519 × 4590/232⌋ = 4590, but
• −4591 − 4591⌊935519 × (−4591)/232⌋ = 4591
• 9921150 − 4591⌊935519 × 9921150/232⌋ = −1

Note if we instead use ⌊2𝑘/𝑀⌋ = 935518, then we see
• 4591 − 4591⌊935518 × 4591/232⌋ = 4591
• 4592 − 4591⌊935518 × 4592/232⌋ = 1

2023.06.08 BY Yang, M Kannwischer 5/27

Institute of Information Science, Academia Sinica

Barrett Reduction (CPU-Specific Cases)

• ARMv7e-M has an SMMULR, easy to do centered Barrett on 32 bit
SMMULR(𝐴, 𝐵) = (𝐴 × 𝐵 + 231) ≫ 32, so 𝑀 = ⌊232/𝑀⌉,
and we have ⌊𝐴/𝑀⌉ ≈ SMMULR(𝐴,𝑀)
Similarly ARMv7e-M has SMLAWx (x = 𝐵, 𝑇 , Bottom / Top) instruction
SMLAWx(𝐴, 𝐵, 𝐶) = ⌊𝐴 × 𝐵x/216⌋ + 𝐶, so
±⌊𝐴𝑥/𝑀⌉ ≈ SMLAWx(±𝑀, 𝐴, 215) ≫ 16, similarly for unsigned case
⌊−𝐴𝑥/𝑀⌋ ∼ SMLAWx(−𝑀̃, 𝐴, 216) ≫ 16, where 𝑀̃ = ⌈232/𝑀⌉.

• X86 provides VPMULHRSW, computes (𝑋 × 𝑌 + 214) ≫ 15 (not very accurate.)

• Many architectures has a multiply-return-high 𝐻𝑖𝑘(𝐴, 𝐵) = ⌊𝐴 × 𝐵/2𝑘⌋.
Precompute 𝑀′ = ⌊2𝑘+ℓ/𝑀⌉, where 2ℓ+1 > 𝑀 > 2ℓ. Then ⌊𝐴/𝑀⌋ ≈ 𝐻𝑖𝑘(𝐴,𝑀′) ≫ ℓ

2023.06.08 BY Yang, M Kannwischer 6/27

Institute of Information Science, Academia Sinica

Barrett Reduction (CPU-Specific Cases)

• ARMv7e-M has an SMMULR, easy to do centered Barrett on 32 bit
SMMULR(𝐴, 𝐵) = (𝐴 × 𝐵 + 231) ≫ 32, so 𝑀 = ⌊232/𝑀⌉,
and we have ⌊𝐴/𝑀⌉ ≈ SMMULR(𝐴,𝑀)
Similarly ARMv7e-M has SMLAWx (x = 𝐵, 𝑇 , Bottom / Top) instruction
SMLAWx(𝐴, 𝐵, 𝐶) = ⌊𝐴 × 𝐵x/216⌋ + 𝐶, so
±⌊𝐴𝑥/𝑀⌉ ≈ SMLAWx(±𝑀, 𝐴, 215) ≫ 16, similarly for unsigned case
⌊−𝐴𝑥/𝑀⌋ ∼ SMLAWx(−𝑀̃, 𝐴, 216) ≫ 16, where 𝑀̃ = ⌈232/𝑀⌉.

• X86 provides VPMULHRSW, computes (𝑋 × 𝑌 + 214) ≫ 15 (not very accurate.)

• Many architectures has a multiply-return-high 𝐻𝑖𝑘(𝐴, 𝐵) = ⌊𝐴 × 𝐵/2𝑘⌋.
Precompute 𝑀′ = ⌊2𝑘+ℓ/𝑀⌉, where 2ℓ+1 > 𝑀 > 2ℓ. Then ⌊𝐴/𝑀⌋ ≈ 𝐻𝑖𝑘(𝐴,𝑀′) ≫ ℓ

2023.06.08 BY Yang, M Kannwischer 6/27

Institute of Information Science, Academia Sinica

Barrett Reduction (CPU-Specific Cases)

• ARMv7e-M has an SMMULR, easy to do centered Barrett on 32 bit
SMMULR(𝐴, 𝐵) = (𝐴 × 𝐵 + 231) ≫ 32, so 𝑀 = ⌊232/𝑀⌉,
and we have ⌊𝐴/𝑀⌉ ≈ SMMULR(𝐴,𝑀)
Similarly ARMv7e-M has SMLAWx (x = 𝐵, 𝑇 , Bottom / Top) instruction
SMLAWx(𝐴, 𝐵, 𝐶) = ⌊𝐴 × 𝐵x/216⌋ + 𝐶, so
±⌊𝐴𝑥/𝑀⌉ ≈ SMLAWx(±𝑀, 𝐴, 215) ≫ 16, similarly for unsigned case
⌊−𝐴𝑥/𝑀⌋ ∼ SMLAWx(−𝑀̃, 𝐴, 216) ≫ 16, where 𝑀̃ = ⌈232/𝑀⌉.

• X86 provides VPMULHRSW, computes (𝑋 × 𝑌 + 214) ≫ 15 (not very accurate.)

• Many architectures has a multiply-return-high 𝐻𝑖𝑘(𝐴, 𝐵) = ⌊𝐴 × 𝐵/2𝑘⌋.
Precompute 𝑀′ = ⌊2𝑘+ℓ/𝑀⌉, where 2ℓ+1 > 𝑀 > 2ℓ. Then ⌊𝐴/𝑀⌋ ≈ 𝐻𝑖𝑘(𝐴,𝑀′) ≫ ℓ

2023.06.08 BY Yang, M Kannwischer 6/27

Institute of Information Science, Academia Sinica

Error of Barrett Reductions BAR𝑀(𝑧) = BAR
⌊⌉
𝑀(𝑧)

We denote the approximation BARJK
𝑀 (𝑧) ∶= 𝑧 − ⌊𝑧 J𝑅/𝑀K /𝑅⌉ for suitable 𝑅

𝐴 mod 𝑀 = 𝐴 − ⌊𝐴/𝑀⌉𝑀, BAR𝑀(𝐴) = 𝐴 − ⌊𝐴⌊2𝑘/𝑀⌉/2𝑘⌉𝑀

• Let 𝜖0 = 𝑀⌊2𝑘/𝑀⌉/2𝑘 − 1, 𝜖1 = ⌈𝐴⌊2𝑘/𝑀⌉/2𝑘⌋ − 𝐴⌊2𝑘/𝑀⌉/2𝑘, 𝜖2 = 𝐴/𝑀 − ⌊𝐴/𝑀⌉

Error = 𝐴 mod 𝑀 − BAR𝑀(𝐴) = 𝑀(⌈𝐴⌈2𝑘/𝑀⌋/2𝑘⌋ − ⌈𝐴/𝑀⌋)
= 𝑀 ((⌈𝐴⌊2𝑘/𝑀⌉/2𝑘⌋ − 𝐴⌈2𝑘/𝑀⌋/2𝑘) + (𝐴⌊2𝑘/𝑀⌉/2𝑘 − ⌈𝐴/𝑀⌋))
= 𝑀 (𝜖1 + (𝐴⌊2𝑘/𝑀⌉/2𝑘 − 𝐴/𝑀) + (𝐴/𝑀 − ⌈𝐴/𝑀⌋)) = 𝑀(𝜖1 + 𝜖2) + 𝐴𝜖0

• The first (two) terms are random errors and the last is a steady “drift” term.

2023.06.08 BY Yang, M Kannwischer 7/27

Institute of Information Science, Academia Sinica

Error of Barrett Reductions BAR𝑀(𝑧) = BAR
⌊⌉
𝑀(𝑧)

We denote the approximation BARJK
𝑀 (𝑧) ∶= 𝑧 − ⌊𝑧 J𝑅/𝑀K /𝑅⌉ for suitable 𝑅

𝐴 mod 𝑀 = 𝐴 − ⌊𝐴/𝑀⌉𝑀, BAR𝑀(𝐴) = 𝐴 − ⌊𝐴⌊2𝑘/𝑀⌉/2𝑘⌉𝑀

• Let 𝜖0 = 𝑀⌊2𝑘/𝑀⌉/2𝑘 − 1, 𝜖1 = ⌈𝐴⌊2𝑘/𝑀⌉/2𝑘⌋ − 𝐴⌊2𝑘/𝑀⌉/2𝑘, 𝜖2 = 𝐴/𝑀 − ⌊𝐴/𝑀⌉

Error = 𝐴 mod 𝑀 − BAR𝑀(𝐴) = 𝑀(⌈𝐴⌈2𝑘/𝑀⌋/2𝑘⌋ − ⌈𝐴/𝑀⌋)

= 𝑀 ((⌈𝐴⌊2𝑘/𝑀⌉/2𝑘⌋ − 𝐴⌈2𝑘/𝑀⌋/2𝑘) + (𝐴⌊2𝑘/𝑀⌉/2𝑘 − ⌈𝐴/𝑀⌋))
= 𝑀 (𝜖1 + (𝐴⌊2𝑘/𝑀⌉/2𝑘 − 𝐴/𝑀) + (𝐴/𝑀 − ⌈𝐴/𝑀⌋)) = 𝑀(𝜖1 + 𝜖2) + 𝐴𝜖0

• The first (two) terms are random errors and the last is a steady “drift” term.

2023.06.08 BY Yang, M Kannwischer 7/27

Institute of Information Science, Academia Sinica

Error of Barrett Reductions BAR𝑀(𝑧) = BAR
⌊⌉
𝑀(𝑧)

We denote the approximation BARJK
𝑀 (𝑧) ∶= 𝑧 − ⌊𝑧 J𝑅/𝑀K /𝑅⌉ for suitable 𝑅

𝐴 mod 𝑀 = 𝐴 − ⌊𝐴/𝑀⌉𝑀, BAR𝑀(𝐴) = 𝐴 − ⌊𝐴⌊2𝑘/𝑀⌉/2𝑘⌉𝑀

• Let 𝜖0 = 𝑀⌊2𝑘/𝑀⌉/2𝑘 − 1, 𝜖1 = ⌈𝐴⌊2𝑘/𝑀⌉/2𝑘⌋ − 𝐴⌊2𝑘/𝑀⌉/2𝑘, 𝜖2 = 𝐴/𝑀 − ⌊𝐴/𝑀⌉

Error = 𝐴 mod 𝑀 − BAR𝑀(𝐴) = 𝑀(⌈𝐴⌈2𝑘/𝑀⌋/2𝑘⌋ − ⌈𝐴/𝑀⌋)
= 𝑀 ((⌈𝐴⌊2𝑘/𝑀⌉/2𝑘⌋ − 𝐴⌈2𝑘/𝑀⌋/2𝑘) + (𝐴⌊2𝑘/𝑀⌉/2𝑘 − ⌈𝐴/𝑀⌋))

= 𝑀 (𝜖1 + (𝐴⌊2𝑘/𝑀⌉/2𝑘 − 𝐴/𝑀) + (𝐴/𝑀 − ⌈𝐴/𝑀⌋)) = 𝑀(𝜖1 + 𝜖2) + 𝐴𝜖0
• The first (two) terms are random errors and the last is a steady “drift” term.

2023.06.08 BY Yang, M Kannwischer 7/27

Institute of Information Science, Academia Sinica

Error of Barrett Reductions BAR𝑀(𝑧) = BAR
⌊⌉
𝑀(𝑧)

We denote the approximation BARJK
𝑀 (𝑧) ∶= 𝑧 − ⌊𝑧 J𝑅/𝑀K /𝑅⌉ for suitable 𝑅

𝐴 mod 𝑀 = 𝐴 − ⌊𝐴/𝑀⌉𝑀, BAR𝑀(𝐴) = 𝐴 − ⌊𝐴⌊2𝑘/𝑀⌉/2𝑘⌉𝑀

• Let 𝜖0 = 𝑀⌊2𝑘/𝑀⌉/2𝑘 − 1, 𝜖1 = ⌈𝐴⌊2𝑘/𝑀⌉/2𝑘⌋ − 𝐴⌊2𝑘/𝑀⌉/2𝑘, 𝜖2 = 𝐴/𝑀 − ⌊𝐴/𝑀⌉

Error = 𝐴 mod 𝑀 − BAR𝑀(𝐴) = 𝑀(⌈𝐴⌈2𝑘/𝑀⌋/2𝑘⌋ − ⌈𝐴/𝑀⌋)
= 𝑀 ((⌈𝐴⌊2𝑘/𝑀⌉/2𝑘⌋ − 𝐴⌈2𝑘/𝑀⌋/2𝑘) + (𝐴⌊2𝑘/𝑀⌉/2𝑘 − ⌈𝐴/𝑀⌋))
= 𝑀 (𝜖1 + (𝐴⌊2𝑘/𝑀⌉/2𝑘 − 𝐴/𝑀) + (𝐴/𝑀 − ⌈𝐴/𝑀⌋)) = 𝑀(𝜖1 + 𝜖2) + 𝐴𝜖0

• The first (two) terms are random errors and the last is a steady “drift” term.

2023.06.08 BY Yang, M Kannwischer 7/27

Institute of Information Science, Academia Sinica

Writing Down Explicit Extreme values of BAR𝑀(𝐴)

• We compute where, just before 𝐴, 𝐴⌊2𝑘/𝑀⌉/2𝑘 last straddles a half-integer,
which is 𝐴̃ = (⌈𝐴⌊2𝑘/𝑀⌉/2𝑘 + 0.5⌋ − 0.5) ⋅ 2𝑘/⌊2𝑘/𝑀⌉, or its ⌈ ⌉ and ⌊ ⌋, to compute
the codomain, just computes the extremum value from
{BAR𝑀(𝐴), BAR𝑀(⌈𝐴̃⌉), BAR𝑀(⌊𝐴̃⌋), BAR𝑀(⌊−𝐴̃⌋), BAR𝑀(⌈−𝐴̃⌉), BAR𝑀(−𝐴)}

• Example: range of Barrett reduction for
𝑘 = 32, 𝐴 = 231, 𝑀 = 4591 is ±2512
𝑘 = 32, 𝐴 = 232, 𝑀 = 4591 is ±2721
𝑘 = 15, 𝐴 = 215, 𝑀 = 4591 is ±2881

• Similarly, for unsigned Barrett, we find 𝐴̃ = ⌊𝐴⌈2𝑘/𝑀⌉/2𝑘⌋ ⋅ 2𝑘/⌈2𝑘/𝑀⌉ and
proceed similarly with the points 𝐴, ⌈𝐴̃⌉, ⌊𝐴̃⌋, ⌈−𝐴̃⌉, ⌊−𝐴̃⌋, −𝐴.

2023.06.08 BY Yang, M Kannwischer 8/27

Institute of Information Science, Academia Sinica

Writing Down Explicit Extreme values of BAR𝑀(𝐴)

• We compute where, just before 𝐴, 𝐴⌊2𝑘/𝑀⌉/2𝑘 last straddles a half-integer,
which is 𝐴̃ = (⌈𝐴⌊2𝑘/𝑀⌉/2𝑘 + 0.5⌋ − 0.5) ⋅ 2𝑘/⌊2𝑘/𝑀⌉, or its ⌈ ⌉ and ⌊ ⌋, to compute
the codomain, just computes the extremum value from
{BAR𝑀(𝐴), BAR𝑀(⌈𝐴̃⌉), BAR𝑀(⌊𝐴̃⌋), BAR𝑀(⌊−𝐴̃⌋), BAR𝑀(⌈−𝐴̃⌉), BAR𝑀(−𝐴)}

• Example: range of Barrett reduction for
𝑘 = 32, 𝐴 = 231, 𝑀 = 4591 is ±2512
𝑘 = 32, 𝐴 = 232, 𝑀 = 4591 is ±2721
𝑘 = 15, 𝐴 = 215, 𝑀 = 4591 is ±2881

• Similarly, for unsigned Barrett, we find 𝐴̃ = ⌊𝐴⌈2𝑘/𝑀⌉/2𝑘⌋ ⋅ 2𝑘/⌈2𝑘/𝑀⌉ and
proceed similarly with the points 𝐴, ⌈𝐴̃⌉, ⌊𝐴̃⌋, ⌈−𝐴̃⌉, ⌊−𝐴̃⌋, −𝐴.

2023.06.08 BY Yang, M Kannwischer 8/27

Institute of Information Science, Academia Sinica

Writing Down Explicit Extreme values of BAR𝑀(𝐴)

• We compute where, just before 𝐴, 𝐴⌊2𝑘/𝑀⌉/2𝑘 last straddles a half-integer,
which is 𝐴̃ = (⌈𝐴⌊2𝑘/𝑀⌉/2𝑘 + 0.5⌋ − 0.5) ⋅ 2𝑘/⌊2𝑘/𝑀⌉, or its ⌈ ⌉ and ⌊ ⌋, to compute
the codomain, just computes the extremum value from
{BAR𝑀(𝐴), BAR𝑀(⌈𝐴̃⌉), BAR𝑀(⌊𝐴̃⌋), BAR𝑀(⌊−𝐴̃⌋), BAR𝑀(⌈−𝐴̃⌉), BAR𝑀(−𝐴)}

• Example: range of Barrett reduction for
𝑘 = 32, 𝐴 = 231, 𝑀 = 4591 is ±2512
𝑘 = 32, 𝐴 = 232, 𝑀 = 4591 is ±2721
𝑘 = 15, 𝐴 = 215, 𝑀 = 4591 is ±2881

• Similarly, for unsigned Barrett, we find 𝐴̃ = ⌊𝐴⌈2𝑘/𝑀⌉/2𝑘⌋ ⋅ 2𝑘/⌈2𝑘/𝑀⌉ and
proceed similarly with the points 𝐴, ⌈𝐴̃⌉, ⌊𝐴̃⌋, ⌈−𝐴̃⌉, ⌊−𝐴̃⌋, −𝐴.

2023.06.08 BY Yang, M Kannwischer 8/27

Institute of Information Science, Academia Sinica

Range where Signed Barrett Reduction is Canonical

The max |𝐴| when BAR𝑀(𝐴) = 𝐴 − ⌊𝐴⌊2𝑘/𝑀⌉/2𝑘⌉ is guaranteed to = 𝐴 − ⌊𝐴/𝑀⌋𝑀?

• for 𝐴/𝑀 and ⌊𝐴⌊2𝑘/𝑀⌉/2𝑘⌉ to agree, we just need

𝛿 ∶= |𝐴/𝑀 − ⌊𝐴⌊2𝑘/𝑀⌉/2𝑘⌉| < 1/(2𝑀)

because ⌊⋅⌉ only changes value at ℤ + 1
2 .

• 𝛿 < (𝐴/2𝑘) |⌊2𝑘/𝑀⌉ − 2𝑘/𝑀| = (𝐴/𝑀)|𝜀0|, therefore
BAR𝑀(𝐴) = 𝐴 mod 𝑀 is guaranteed if 𝐴 < 1/(2|𝜀0|).
Example: Barrett reduction is canonical for
𝑘 = 32, 𝑀 = 4591 then 𝜀0 = 1.01 × 10−7, 𝐴 ≲ 5 × 106

𝑘 = 31, 𝑀 = 4591 then 𝜀0 = −0.97 × 10−7, 𝐴 ≲ 5 × 106
• for unsigned Barrett we often don’t have such luxuries.

2023.06.08 BY Yang, M Kannwischer 9/27

Institute of Information Science, Academia Sinica

Range where Signed Barrett Reduction is Canonical

The max |𝐴| when BAR𝑀(𝐴) = 𝐴 − ⌊𝐴⌊2𝑘/𝑀⌉/2𝑘⌉ is guaranteed to = 𝐴 − ⌊𝐴/𝑀⌋𝑀?

• for 𝐴/𝑀 and ⌊𝐴⌊2𝑘/𝑀⌉/2𝑘⌉ to agree, we just need

𝛿 ∶= |𝐴/𝑀 − ⌊𝐴⌊2𝑘/𝑀⌉/2𝑘⌉| < 1/(2𝑀)

because ⌊⋅⌉ only changes value at ℤ + 1
2 .

• 𝛿 < (𝐴/2𝑘) |⌊2𝑘/𝑀⌉ − 2𝑘/𝑀| = (𝐴/𝑀)|𝜀0|, therefore
BAR𝑀(𝐴) = 𝐴 mod 𝑀 is guaranteed if 𝐴 < 1/(2|𝜀0|).
Example: Barrett reduction is canonical for
𝑘 = 32, 𝑀 = 4591 then 𝜀0 = 1.01 × 10−7, 𝐴 ≲ 5 × 106

𝑘 = 31, 𝑀 = 4591 then 𝜀0 = −0.97 × 10−7, 𝐴 ≲ 5 × 106

• for unsigned Barrett we often don’t have such luxuries.

2023.06.08 BY Yang, M Kannwischer 9/27

Institute of Information Science, Academia Sinica

Range where Signed Barrett Reduction is Canonical

The max |𝐴| when BAR𝑀(𝐴) = 𝐴 − ⌊𝐴⌊2𝑘/𝑀⌉/2𝑘⌉ is guaranteed to = 𝐴 − ⌊𝐴/𝑀⌋𝑀?

• for 𝐴/𝑀 and ⌊𝐴⌊2𝑘/𝑀⌉/2𝑘⌉ to agree, we just need

𝛿 ∶= |𝐴/𝑀 − ⌊𝐴⌊2𝑘/𝑀⌉/2𝑘⌉| < 1/(2𝑀)

because ⌊⋅⌉ only changes value at ℤ + 1
2 .

• 𝛿 < (𝐴/2𝑘) |⌊2𝑘/𝑀⌉ − 2𝑘/𝑀| = (𝐴/𝑀)|𝜀0|, therefore
BAR𝑀(𝐴) = 𝐴 mod 𝑀 is guaranteed if 𝐴 < 1/(2|𝜀0|).
Example: Barrett reduction is canonical for
𝑘 = 32, 𝑀 = 4591 then 𝜀0 = 1.01 × 10−7, 𝐴 ≲ 5 × 106

𝑘 = 31, 𝑀 = 4591 then 𝜀0 = −0.97 × 10−7, 𝐴 ≲ 5 × 106

• for unsigned Barrett we often don’t have such luxuries.

2023.06.08 BY Yang, M Kannwischer 9/27

Institute of Information Science, Academia Sinica

Range where Signed Barrett Reduction is Canonical

The max |𝐴| when BAR𝑀(𝐴) = 𝐴 − ⌊𝐴⌊2𝑘/𝑀⌉/2𝑘⌉ is guaranteed to = 𝐴 − ⌊𝐴/𝑀⌋𝑀?

• for 𝐴/𝑀 and ⌊𝐴⌊2𝑘/𝑀⌉/2𝑘⌉ to agree, we just need

𝛿 ∶= |𝐴/𝑀 − ⌊𝐴⌊2𝑘/𝑀⌉/2𝑘⌉| < 1/(2𝑀)

because ⌊⋅⌉ only changes value at ℤ + 1
2 .

• 𝛿 < (𝐴/2𝑘) |⌊2𝑘/𝑀⌉ − 2𝑘/𝑀| = (𝐴/𝑀)|𝜀0|, therefore
BAR𝑀(𝐴) = 𝐴 mod 𝑀 is guaranteed if 𝐴 < 1/(2|𝜀0|).
Example: Barrett reduction is canonical for
𝑘 = 32, 𝑀 = 4591 then 𝜀0 = 1.01 × 10−7, 𝐴 ≲ 5 × 106

𝑘 = 31, 𝑀 = 4591 then 𝜀0 = −0.97 × 10−7, 𝐴 ≲ 5 × 106
• for unsigned Barrett we often don’t have such luxuries.

2023.06.08 BY Yang, M Kannwischer 9/27

Institute of Information Science, Academia Sinica

Montgomery Reduction (Signed, for𝑀 odd)

• We want 𝐴 mod 𝑀, but Barrett reduction requires full-length (double-length,
depending on PoV) multiplications, can we do better?

• Answer by Peter Montgomery: let’s compute not 𝐴 mod 𝑀, but 𝐴/𝑅 mod 𝑀,
where 𝑅 is something that is easy to divide by (typically power of 2)

• Compute 𝑀′ = 1/𝑀 mod 𝑅 given 𝐴, compute ℓ = 𝐴𝑀′ mod 𝑅
(as (𝐴 mod 𝑅)𝑀′ mod 𝑅) then ℓ𝑀 ≡ 𝐴𝑀′𝑀 ≡ 𝐴 (mod 𝑅)

• So we compute 𝐴 − ℓ𝑀, this is divisible by 𝑅, hence, (𝐴 − ℓ𝑀)/𝑅 ≡ 𝐴/𝑅 (mod 𝑀)
because (𝐴 − ℓ𝑀)/𝑅 ⋅ 𝑅 = 𝐴 − ℓ𝑀 ≡ 𝐴 (mod 𝑀), and gcd(𝑀, 𝑅) = 1

2023.06.08 BY Yang, M Kannwischer 10/27

Institute of Information Science, Academia Sinica

Montgomery Reduction (Signed, for𝑀 odd)

• We want 𝐴 mod 𝑀, but Barrett reduction requires full-length (double-length,
depending on PoV) multiplications, can we do better?

• Answer by Peter Montgomery: let’s compute not 𝐴 mod 𝑀, but 𝐴/𝑅 mod 𝑀,
where 𝑅 is something that is easy to divide by (typically power of 2)

• Compute 𝑀′ = 1/𝑀 mod 𝑅 given 𝐴, compute ℓ = 𝐴𝑀′ mod 𝑅
(as (𝐴 mod 𝑅)𝑀′ mod 𝑅) then ℓ𝑀 ≡ 𝐴𝑀′𝑀 ≡ 𝐴 (mod 𝑅)

• So we compute 𝐴 − ℓ𝑀, this is divisible by 𝑅, hence, (𝐴 − ℓ𝑀)/𝑅 ≡ 𝐴/𝑅 (mod 𝑀)
because (𝐴 − ℓ𝑀)/𝑅 ⋅ 𝑅 = 𝐴 − ℓ𝑀 ≡ 𝐴 (mod 𝑀), and gcd(𝑀, 𝑅) = 1

2023.06.08 BY Yang, M Kannwischer 10/27

Institute of Information Science, Academia Sinica

Montgomery Reduction (Signed, for𝑀 odd)

• We want 𝐴 mod 𝑀, but Barrett reduction requires full-length (double-length,
depending on PoV) multiplications, can we do better?

• Answer by Peter Montgomery: let’s compute not 𝐴 mod 𝑀, but 𝐴/𝑅 mod 𝑀,
where 𝑅 is something that is easy to divide by (typically power of 2)

• Compute 𝑀′ = 1/𝑀 mod 𝑅 given 𝐴, compute ℓ = 𝐴𝑀′ mod 𝑅
(as (𝐴 mod 𝑅)𝑀′ mod 𝑅) then ℓ𝑀 ≡ 𝐴𝑀′𝑀 ≡ 𝐴 (mod 𝑅)

• So we compute 𝐴 − ℓ𝑀, this is divisible by 𝑅, hence, (𝐴 − ℓ𝑀)/𝑅 ≡ 𝐴/𝑅 (mod 𝑀)
because (𝐴 − ℓ𝑀)/𝑅 ⋅ 𝑅 = 𝐴 − ℓ𝑀 ≡ 𝐴 (mod 𝑀), and gcd(𝑀, 𝑅) = 1

2023.06.08 BY Yang, M Kannwischer 10/27

Institute of Information Science, Academia Sinica

Montgomery Reduction (Signed, for𝑀 odd)

• We want 𝐴 mod 𝑀, but Barrett reduction requires full-length (double-length,
depending on PoV) multiplications, can we do better?

• Answer by Peter Montgomery: let’s compute not 𝐴 mod 𝑀, but 𝐴/𝑅 mod 𝑀,
where 𝑅 is something that is easy to divide by (typically power of 2)

• Compute 𝑀′ = 1/𝑀 mod 𝑅 given 𝐴, compute ℓ = 𝐴𝑀′ mod 𝑅
(as (𝐴 mod 𝑅)𝑀′ mod 𝑅) then ℓ𝑀 ≡ 𝐴𝑀′𝑀 ≡ 𝐴 (mod 𝑅)

• So we compute 𝐴 − ℓ𝑀, this is divisible by 𝑅, hence, (𝐴 − ℓ𝑀)/𝑅 ≡ 𝐴/𝑅 (mod 𝑀)
because (𝐴 − ℓ𝑀)/𝑅 ⋅ 𝑅 = 𝐴 − ℓ𝑀 ≡ 𝐴 (mod 𝑀), and gcd(𝑀, 𝑅) = 1

2023.06.08 BY Yang, M Kannwischer 10/27

Institute of Information Science, Academia Sinica

Montgomery Reduction (Signed, for𝑀 odd)

• We want 𝐴 mod 𝑀, but Barrett reduction requires full-length (double-length,
depending on PoV) multiplications, can we do better?

• Answer by Peter Montgomery: let’s compute not 𝐴 mod 𝑀, but 𝐴/𝑅 mod 𝑀,
where 𝑅 is something that is easy to divide by (typically power of 2)

• Compute 𝑀′ = 1/𝑀 mod 𝑅 given 𝐴, compute ℓ = 𝐴𝑀′ mod 𝑅
(as (𝐴 mod 𝑅)𝑀′ mod 𝑅) then ℓ𝑀 ≡ 𝐴𝑀′𝑀 ≡ 𝐴 (mod 𝑅)

• So we compute 𝐴 − ℓ𝑀, this is divisible by 𝑅, hence, (𝐴 − ℓ𝑀)/𝑅 ≡ 𝐴/𝑅 (mod 𝑀)
because (𝐴 − ℓ𝑀)/𝑅 ⋅ 𝑅 = 𝐴 − ℓ𝑀 ≡ 𝐴 (mod 𝑀), and gcd(𝑀, 𝑅) = 1

• For (𝐴 − ℓ𝑀)/𝑅 we need not the bottom half of ℓ𝑀, just the top half.

2023.06.08 BY Yang, M Kannwischer 10/27

Institute of Information Science, Academia Sinica

Examples of (Signed) Montgomery Reduction

• Let 𝑀 = 83, 𝑅 = 100, Now we wish to compute the (signed) Montgomery
reduction of 𝐴 = 6412. We know that 𝑀′ = 1/𝑀 mod 𝑅 = 47. now
ℓ = (𝐴 mod 𝑅)𝑀′ mod 𝑅 = 12 × 47 mod 100 = −36 (centered or lifted mod).
𝐴 − ℓ𝑀 = 6412 − (−36) × 83 = 6412 − (−2988) = 9400, so we get 94.

• Montgomery does not guarantee the canonical value: 6412 ≅ 1100 (mod 83).

• Suppose we want the Montgomery reduction of 𝐴 = 3322, then
ℓ = 22 × 47 mod 100 = 34, and 𝐴 − ℓ𝑀 = 3322 − 34 × 87 = 500, and we get 5.

• 𝑀′ is computable on the fly via Hensel Lifting:

• Say 𝑀 = 47, 𝑅 = 256 = 28, for 𝑥 = 1/𝑀 (mod 256), set 𝑥0 = 1 ≡ 𝑥 (mod 2), then

2023.06.08 BY Yang, M Kannwischer 11/27

Institute of Information Science, Academia Sinica

Examples of (Signed) Montgomery Reduction

• Let 𝑀 = 83, 𝑅 = 100, Now we wish to compute the (signed) Montgomery
reduction of 𝐴 = 6412. We know that 𝑀′ = 1/𝑀 mod 𝑅 = 47. now
ℓ = (𝐴 mod 𝑅)𝑀′ mod 𝑅 = 12 × 47 mod 100 = −36 (centered or lifted mod).
𝐴 − ℓ𝑀 = 6412 − (−36) × 83 = 6412 − (−2988) = 9400, so we get 94.

• Montgomery does not guarantee the canonical value: 6412 ≅ 1100 (mod 83).

• Suppose we want the Montgomery reduction of 𝐴 = 3322, then
ℓ = 22 × 47 mod 100 = 34, and 𝐴 − ℓ𝑀 = 3322 − 34 × 87 = 500, and we get 5.

• 𝑀′ is computable on the fly via Hensel Lifting:

• Say 𝑀 = 47, 𝑅 = 256 = 28, for 𝑥 = 1/𝑀 (mod 256), set 𝑥0 = 1 ≡ 𝑥 (mod 2), then

2023.06.08 BY Yang, M Kannwischer 11/27

Institute of Information Science, Academia Sinica

Examples of (Signed) Montgomery Reduction

• Let 𝑀 = 83, 𝑅 = 100, Now we wish to compute the (signed) Montgomery
reduction of 𝐴 = 6412. We know that 𝑀′ = 1/𝑀 mod 𝑅 = 47. now
ℓ = (𝐴 mod 𝑅)𝑀′ mod 𝑅 = 12 × 47 mod 100 = −36 (centered or lifted mod).
𝐴 − ℓ𝑀 = 6412 − (−36) × 83 = 6412 − (−2988) = 9400, so we get 94.

• Montgomery does not guarantee the canonical value: 6412 ≅ 1100 (mod 83).

• Suppose we want the Montgomery reduction of 𝐴 = 3322, then
ℓ = 22 × 47 mod 100 = 34, and 𝐴 − ℓ𝑀 = 3322 − 34 × 87 = 500, and we get 5.

• 𝑀′ is computable on the fly via Hensel Lifting:

• Say 𝑀 = 47, 𝑅 = 256 = 28, for 𝑥 = 1/𝑀 (mod 256), set 𝑥0 = 1 ≡ 𝑥 (mod 2), then

2023.06.08 BY Yang, M Kannwischer 11/27

Institute of Information Science, Academia Sinica

Examples of (Signed) Montgomery Reduction

• Let 𝑀 = 83, 𝑅 = 100, Now we wish to compute the (signed) Montgomery
reduction of 𝐴 = 6412. We know that 𝑀′ = 1/𝑀 mod 𝑅 = 47. now
ℓ = (𝐴 mod 𝑅)𝑀′ mod 𝑅 = 12 × 47 mod 100 = −36 (centered or lifted mod).
𝐴 − ℓ𝑀 = 6412 − (−36) × 83 = 6412 − (−2988) = 9400, so we get 94.

• Montgomery does not guarantee the canonical value: 6412 ≅ 1100 (mod 83).

• Suppose we want the Montgomery reduction of 𝐴 = 3322, then
ℓ = 22 × 47 mod 100 = 34, and 𝐴 − ℓ𝑀 = 3322 − 34 × 87 = 500, and we get 5.

• 𝑀′ is computable on the fly via Hensel Lifting:
• Say 𝑀 = 47, 𝑅 = 256 = 28, for 𝑥 = 1/𝑀 (mod 256), set 𝑥0 = 1 ≡ 𝑥 (mod 2), then

2023.06.08 BY Yang, M Kannwischer 11/27

Institute of Information Science, Academia Sinica

Examples of (Signed) Montgomery Reduction

• Let 𝑀 = 83, 𝑅 = 100, Now we wish to compute the (signed) Montgomery
reduction of 𝐴 = 6412. We know that 𝑀′ = 1/𝑀 mod 𝑅 = 47. now
ℓ = (𝐴 mod 𝑅)𝑀′ mod 𝑅 = 12 × 47 mod 100 = −36 (centered or lifted mod).
𝐴 − ℓ𝑀 = 6412 − (−36) × 83 = 6412 − (−2988) = 9400, so we get 94.

• Montgomery does not guarantee the canonical value: 6412 ≅ 1100 (mod 83).
• Suppose we want the Montgomery reduction of 𝐴 = 3322, then
ℓ = 22 × 47 mod 100 = 34, and 𝐴 − ℓ𝑀 = 3322 − 34 × 87 = 500, and we get 5.

• 𝑀′ is computable on the fly via Hensel Lifting:
• Say 𝑀 = 47, 𝑅 = 256 = 28, for 𝑥 = 1/𝑀 (mod 256), set 𝑥0 = 1 ≡ 𝑥 (mod 2), then

𝑥1 ≡ 2𝑥0 − 𝑥20𝑀 ≡ −45 ≡ −1 ≡ 𝑥 (mod 4); 𝑥2 ≡ 2𝑥1 − 𝑥21𝑀 ≡ −1 ≡ 𝑥 (mod 16);
𝑥3 ≡ 2𝑥2 − 𝑥22𝑀 ≡ −49 ≡ 𝑥 (mod 256).

2023.06.08 BY Yang, M Kannwischer 11/27

Institute of Information Science, Academia Sinica

Unsigned (Original) Montgomery Reduction

• 𝐴 is unsigned: now we let 𝑀′ = −1/𝑀 (mod 𝑅)
ℓ = 𝑀′(𝐴 mod 𝑅) mod 𝑅 , so 𝐴 + ℓ𝑀 = 0 (mod 𝑅)
hence (𝐴 + ℓ𝑀)/𝑅 = 𝐴/𝑅 (mod 𝑀)

• Suppose we wish to compute the unsigned Montgomery Reduction of 6412
and 3322 as above, then 𝑀′ = −1/𝑀 mod 𝑅 = 53.

• The reduction of 6412 is (6412 + (53 × 12 mod 100) × 83)/100 = 94 as before.
• The reduction of 3322 is 3322 + (53 × 22 mod 100) × 83 = 88 ≠ 5.

• Pros and Cons:

• pluses: deals with unsigned numbers, so can do multiprecision
• minuses: larger numbers, full-length addition for 𝐴 + ℓ𝑀

2023.06.08 BY Yang, M Kannwischer 12/27

Institute of Information Science, Academia Sinica

Unsigned (Original) Montgomery Reduction

• 𝐴 is unsigned: now we let 𝑀′ = −1/𝑀 (mod 𝑅)
ℓ = 𝑀′(𝐴 mod 𝑅) mod 𝑅 , so 𝐴 + ℓ𝑀 = 0 (mod 𝑅)
hence (𝐴 + ℓ𝑀)/𝑅 = 𝐴/𝑅 (mod 𝑀)

• Suppose we wish to compute the unsigned Montgomery Reduction of 6412
and 3322 as above, then 𝑀′ = −1/𝑀 mod 𝑅 = 53.

• The reduction of 6412 is (6412 + (53 × 12 mod 100) × 83)/100 = 94 as before.
• The reduction of 3322 is 3322 + (53 × 22 mod 100) × 83 = 88 ≠ 5.

• Pros and Cons:

• pluses: deals with unsigned numbers, so can do multiprecision
• minuses: larger numbers, full-length addition for 𝐴 + ℓ𝑀

2023.06.08 BY Yang, M Kannwischer 12/27

Institute of Information Science, Academia Sinica

Unsigned (Original) Montgomery Reduction

• 𝐴 is unsigned: now we let 𝑀′ = −1/𝑀 (mod 𝑅)
ℓ = 𝑀′(𝐴 mod 𝑅) mod 𝑅 , so 𝐴 + ℓ𝑀 = 0 (mod 𝑅)
hence (𝐴 + ℓ𝑀)/𝑅 = 𝐴/𝑅 (mod 𝑀)

• Suppose we wish to compute the unsigned Montgomery Reduction of 6412
and 3322 as above, then 𝑀′ = −1/𝑀 mod 𝑅 = 53.

• The reduction of 6412 is (6412 + (53 × 12 mod 100) × 83)/100 = 94 as before.
• The reduction of 3322 is 3322 + (53 × 22 mod 100) × 83 = 88 ≠ 5.

• Pros and Cons:
• pluses: deals with unsigned numbers, so can do multiprecision

• minuses: larger numbers, full-length addition for 𝐴 + ℓ𝑀

2023.06.08 BY Yang, M Kannwischer 12/27

Institute of Information Science, Academia Sinica

Unsigned (Original) Montgomery Reduction

• 𝐴 is unsigned: now we let 𝑀′ = −1/𝑀 (mod 𝑅)
ℓ = 𝑀′(𝐴 mod 𝑅) mod 𝑅 , so 𝐴 + ℓ𝑀 = 0 (mod 𝑅)
hence (𝐴 + ℓ𝑀)/𝑅 = 𝐴/𝑅 (mod 𝑀)

• Suppose we wish to compute the unsigned Montgomery Reduction of 6412
and 3322 as above, then 𝑀′ = −1/𝑀 mod 𝑅 = 53.

• The reduction of 6412 is (6412 + (53 × 12 mod 100) × 83)/100 = 94 as before.
• The reduction of 3322 is 3322 + (53 × 22 mod 100) × 83 = 88 ≠ 5.

• Pros and Cons:
• pluses: deals with unsigned numbers, so can do multiprecision
• minuses: larger numbers, full-length addition for 𝐴 + ℓ𝑀

2023.06.08 BY Yang, M Kannwischer 12/27

Institute of Information Science, Academia Sinica

Range under Montgomery Reduction (heretofore “MR”)

• |MR(𝐴)| = |(𝐴 − ℓ𝑀)|/𝑅 ≤ |𝐴/𝑅| + 𝑀|ℓ/𝑅| ≤ |𝐴|/𝑅 + 𝑀/2
since we can compute in signed mod (centered mod)

• Corollary: for |𝐴| < 𝑅𝑀/2, |MR(𝐴)| < 𝑀
• for unsigned Montgomery (we use 𝑀′ = −1/𝑀 mod 𝑅 instead) and compute

|MR(𝐴)| = |𝐴 + ℓ𝑀|/𝑅 ≤ |𝐴/𝑅| + 𝑀ℓ/𝑅
≤ |𝐴|/𝑅 + 𝑀 ≤ 2𝑀, provided that 𝐴 < 𝑅𝑀.

• Note: bounds are smaller than 𝑀 and 2𝑀 when 𝐴 is smaller.

2023.06.08 BY Yang, M Kannwischer 13/27

Institute of Information Science, Academia Sinica

Range under Montgomery Reduction (heretofore “MR”)

• |MR(𝐴)| = |(𝐴 − ℓ𝑀)|/𝑅 ≤ |𝐴/𝑅| + 𝑀|ℓ/𝑅| ≤ |𝐴|/𝑅 + 𝑀/2
since we can compute in signed mod (centered mod)

• Corollary: for |𝐴| < 𝑅𝑀/2, |MR(𝐴)| < 𝑀

• for unsigned Montgomery (we use 𝑀′ = −1/𝑀 mod 𝑅 instead) and compute

|MR(𝐴)| = |𝐴 + ℓ𝑀|/𝑅 ≤ |𝐴/𝑅| + 𝑀ℓ/𝑅
≤ |𝐴|/𝑅 + 𝑀 ≤ 2𝑀, provided that 𝐴 < 𝑅𝑀.

• Note: bounds are smaller than 𝑀 and 2𝑀 when 𝐴 is smaller.

2023.06.08 BY Yang, M Kannwischer 13/27

Institute of Information Science, Academia Sinica

Range under Montgomery Reduction (heretofore “MR”)

• |MR(𝐴)| = |(𝐴 − ℓ𝑀)|/𝑅 ≤ |𝐴/𝑅| + 𝑀|ℓ/𝑅| ≤ |𝐴|/𝑅 + 𝑀/2
since we can compute in signed mod (centered mod)

• Corollary: for |𝐴| < 𝑅𝑀/2, |MR(𝐴)| < 𝑀
• for unsigned Montgomery (we use 𝑀′ = −1/𝑀 mod 𝑅 instead) and compute

|MR(𝐴)| = |𝐴 + ℓ𝑀|/𝑅 ≤ |𝐴/𝑅| + 𝑀ℓ/𝑅
≤ |𝐴|/𝑅 + 𝑀 ≤ 2𝑀, provided that 𝐴 < 𝑅𝑀.

• Note: bounds are smaller than 𝑀 and 2𝑀 when 𝐴 is smaller.

2023.06.08 BY Yang, M Kannwischer 13/27

Institute of Information Science, Academia Sinica

Range under Montgomery Reduction (heretofore “MR”)

• |MR(𝐴)| = |(𝐴 − ℓ𝑀)|/𝑅 ≤ |𝐴/𝑅| + 𝑀|ℓ/𝑅| ≤ |𝐴|/𝑅 + 𝑀/2
since we can compute in signed mod (centered mod)

• Corollary: for |𝐴| < 𝑅𝑀/2, |MR(𝐴)| < 𝑀
• for unsigned Montgomery (we use 𝑀′ = −1/𝑀 mod 𝑅 instead) and compute

|MR(𝐴)| = |𝐴 + ℓ𝑀|/𝑅 ≤ |𝐴/𝑅| + 𝑀ℓ/𝑅
≤ |𝐴|/𝑅 + 𝑀 ≤ 2𝑀, provided that 𝐴 < 𝑅𝑀.

• Note: bounds are smaller than 𝑀 and 2𝑀 when 𝐴 is smaller.

2023.06.08 BY Yang, M Kannwischer 13/27

Institute of Information Science, Academia Sinica

Montgomery Multiplication (1)

• if 𝑏 is known, then we compute 𝑎𝑏 by computing MR(𝑎 ⋅ (𝑏𝑅 mod 𝑀))
where 𝑏𝑅 mod 𝑀 is precomputed.

• On architectures where ”top half of products” and ”bottom half of products”
are separate, we can even optimize to (all mods here are mod±, centered).

Mont𝑀(𝑎, 𝑏) = MR(𝑎 ⋅ (𝑏𝑅 mod 𝑀))
= [𝑎(𝑏𝑅 mod 𝑀) − ((𝑎 ⋅ (𝑏𝑅 mod 𝑀) mod 𝑅) ⋅ 𝑀′ mod 𝑅) ⋅ 𝑀]/𝑅
= [𝑎 ⋅ (𝑏𝑅 mod 𝑀) − 𝑀 ⋅ (𝑎 ⋅ 𝑀′ ⋅ (𝑏𝑅′ mod 𝑀) mod 𝑅)]/𝑅
= Mulhi[𝑎𝐵] − Mulhi[𝑀 ⋅ Mullo[𝑎𝐵′]]

where 𝐵 = (𝑏𝑅 mod 𝑀), 𝐵′ = (𝐵𝑀′ mod 𝑅)

2023.06.08 BY Yang, M Kannwischer 14/27

Institute of Information Science, Academia Sinica

Montgomery Multiplication (1)

• if 𝑏 is known, then we compute 𝑎𝑏 by computing MR(𝑎 ⋅ (𝑏𝑅 mod 𝑀))
where 𝑏𝑅 mod 𝑀 is precomputed.

• On architectures where ”top half of products” and ”bottom half of products”
are separate, we can even optimize to (all mods here are mod±, centered).

Mont𝑀(𝑎, 𝑏) = MR(𝑎 ⋅ (𝑏𝑅 mod 𝑀))
= [𝑎(𝑏𝑅 mod 𝑀) − ((𝑎 ⋅ (𝑏𝑅 mod 𝑀) mod 𝑅) ⋅ 𝑀′ mod 𝑅) ⋅ 𝑀]/𝑅
= [𝑎 ⋅ (𝑏𝑅 mod 𝑀) − 𝑀 ⋅ (𝑎 ⋅ 𝑀′ ⋅ (𝑏𝑅′ mod 𝑀) mod 𝑅)]/𝑅
= Mulhi[𝑎𝐵] − Mulhi[𝑀 ⋅ Mullo[𝑎𝐵′]]

where 𝐵 = (𝑏𝑅 mod 𝑀), 𝐵′ = (𝐵𝑀′ mod 𝑅)
2023.06.08 BY Yang, M Kannwischer 14/27

Institute of Information Science, Academia Sinica

Montgomery Multiplication (2)
Equivalence of Montgomery Reduction with Barrett Reductionr

𝑅
𝑀

z
mod± 𝑅 = (−(𝑅modJ K 𝑀) ⋅ (𝑀−1mod± 𝑅))mod± 𝑅

Proof: 𝑀
r
𝑅
𝑀

z
= 𝑅 − 𝑅 modJ K 𝑀, take mod± 𝑅 and multiply by 𝑀−1mod± 𝑅

BARJK
𝑀 (𝑧) = 𝑀𝑅(𝑧(𝑅modJ K 𝑀)), in particular BAR𝑀(𝑧) = 𝑀𝑅(𝑧(𝑅mod±𝑀))

BARJK
𝑀 (𝑧) = 𝑧 − 𝑀 ⌊𝑧

r 𝑅
𝑀

z
⌉ = 𝑧 − 𝑀𝑅 (𝑧

r 𝑅
𝑀

z
− (𝑧

r 𝑅
𝑀

z
)mod± 𝑅)

= 𝑧 − 1𝑅 {𝑧𝑀
r 𝑅
𝑀

z
− 𝑀 [(−𝑧(𝑅 modJ K 𝑀) ⋅ (𝑀−1mod± 𝑅))mod± 𝑅]}

= 1
𝑅 {𝑧(𝑅 modJ K 𝑀) + 𝑀 [−𝑧(𝑅 modJ K 𝑀)(𝑀−1mod± 𝑅)mod± 𝑅]}

2023.06.08 BY Yang, M Kannwischer 15/27

Institute of Information Science, Academia Sinica

Montgomery Multiplication (2, Continued)
Equivalence of Montgomery Multiplication with Barrett Multiplication

BARJK
𝑀 (𝐴, 𝐵) ∶= 𝐴𝐵 − 𝑀 ⌊𝐴

r
𝐵𝑅
𝑀

z
⌉ = 𝑀𝑅(𝐴(𝐵𝑅modJ K 𝑀))

Note that
r
𝐵𝑅
𝑀

z
mod± 𝑅 = (−(𝐵𝑅 modJ K 𝑀) ⋅ (𝑀−1mod± 𝑅))mod± 𝑅 as above.

BARJK
𝑀 (𝐴, 𝐵) = 𝐴𝐵 − 𝑀 ⌊𝐴

r𝐵𝑅
𝑀

z
⌉ = 𝐴𝐵 − 𝑀𝑅 (𝐴

r𝐵𝑅
𝑀

z
− (𝐴

r𝐵𝑅
𝑀

z
)mod± 𝑅)

= 𝐴𝐵 − 1𝑅 {𝐴𝑀
r𝐵𝑅
𝑀

z
− 𝑀 [(−𝐴(𝐵𝑅 modJ K 𝑀) ⋅ (𝑀−1mod± 𝑅))mod± 𝑅]}

= 𝐴 − 1𝑅 {𝐴𝑀
𝐵𝑅 − (𝐵𝑅 modJ K 𝑀)

𝑀 − 𝑀 [(−𝐴(𝐵𝑅 modJ K 𝑀)(𝑀−1mod± 𝑅)) mod± 𝑅]}

= 1
𝑅 {𝐴(𝐵𝑅 modJ K 𝑀) + 𝑀 [−𝐴(𝐵𝑅 modJ K 𝑀)(𝑀−1mod± 𝑅)mod± 𝑅]}

2023.06.08 BY Yang, M Kannwischer 16/27

Institute of Information Science, Academia Sinica

Montgomery Multiplication (2)

Now, we can do the following: (denote 𝐵″ = (𝐵′𝑀 − 𝐵) ≫ 32):

MM(𝑎𝑏) = Mulhi(𝑎𝐵) −Mulhi(𝑀 ⋅Mullo(𝑎𝐵′))
= ⌈𝑎𝐵/𝑅⌋ − ⌈𝑀 (𝑎𝐵′mod± 𝑅) /𝑅⌋
= ⌈𝑎𝐵/𝑅⌋ − ⌈𝑀 (𝑎𝐵′ − ⌈𝑎𝐵′/𝑅⌋𝑅) /𝑅⌋
= ⌈𝑎𝐵/𝑅⌋ − ⌈𝑎𝐵′𝑀/𝑅⌋ + 𝑀⌈𝑎𝐵′/𝑅⌋
= −𝑎 ⋅ (𝐵′𝑀 − 𝐵)/𝑅 + 𝑀 ⋅ ⌈𝑎𝐵′/𝑅⌋ = −𝑎𝐵″ + 𝑀 ⋅ ⌈𝑎𝐵′/𝑅⌋

which is bounded in absolute value by |𝑎||𝐵|/𝑅 + 𝑀/2 < |𝑎|/2 + 𝑀/2 if |𝐵| < 𝑅/2.

2023.06.08 BY Yang, M Kannwischer 17/27

Institute of Information Science, Academia Sinica

The reason for doing this

But, why? Certain microarchitectures can do both ⌈𝑎𝐵′/𝑅⌋, and
multiply-and-accumulate. Example: ARM’s NEON has SQRDMULH(𝑥, 𝑦) = ⌈𝑥𝑦/231⌋
so ⌈𝑎𝐵′/𝑅⌋ = SQRDMULH(𝑎, 𝐵′/2) if we take care to pick 𝐵 (and hence 𝐵′) even. Note
that

• 𝐵″ = MR(−𝐵) ≡ −𝐵/𝑅 ≡ −𝑏 (mod 𝑀).
• ⌈𝑏𝑅/𝑀⌋ = −𝐵′. Because

⌈𝑏𝑅/𝑀⌋ = (𝑏𝑅 − 𝐵)/𝑀 ≡ −𝐵/𝑀 ≡ −𝐵𝑀′ ≡ −𝐵′ (mod 𝑅).

But 𝐵′ ∈ [−𝑅/2, 𝑅/2) and so is ⌈𝑏𝑅/𝑀⌋.

2023.06.08 BY Yang, M Kannwischer 18/27

Institute of Information Science, Academia Sinica

Montgomery Multiplication (2): Equivalence to Barrett

BAR𝑀(𝑎𝑏) = 𝑎𝑏 − 𝑀⌈𝑎𝑏⌈𝑅/𝑀⌋/𝑅⌋ ≈ 𝑎𝑏 − 𝑀⌈𝑎⌈𝑏𝑅/𝑀⌋/𝑅⌋ ≈ −𝑎𝐵″ + 𝑀⌈𝑎𝐵′/𝑅⌋.

Can we prove that the two are equivalent? We can because 𝐵 = 𝑏𝑅mod±𝑀.

• Given 𝐵″ = (𝐵′𝑀 − 𝐵)/𝑅 is the same as MR(−𝐵) ≡ −𝐵/𝑅 ≡ −𝑏 (mod 𝑀), we know
that 𝐵″ is a representative of −𝑏 (mod 𝑀). But which? 𝐵″𝑅 = 𝐵′𝑀 − 𝐵, where
|𝐵| < 𝑀, so if |𝐵′| < 𝑅/2, max of |𝐵″| is
((𝑅/2 − 1)𝑀 + 𝑀 − 1) /𝑅 = (𝑅𝑀/2 − 1)/𝑅 < 𝑀/2. But if 𝐵′ = −𝑅/2, then from
𝐵′ = 𝐵𝑀′mod± 𝑅 and 𝑀′ being odd we know that 𝐵 ≡ −𝑅/2 (mod 𝑅), which is
impossible when 𝑅 > 𝑀 and 𝐵 = 𝑏𝑅mod±𝑀, Therefore −𝑏 = 𝐵″ when
|𝑏| < 𝑀/2.

2023.06.08 BY Yang, M Kannwischer 19/27

Institute of Information Science, Academia Sinica

[Becker et al CHES 2022] Barrett (Signed Shoup) Multiplication
BARJK

𝑀 (𝐴, 𝐵) ∶= 𝐴𝐵 − ⌊𝐴
q
𝐵 ⋅ 2𝑘/𝑀

y
/2𝑘⌉𝑀, we omit 𝐵 if 1, this is Barrett Reduction if 𝐵 = 1 and J⋅K ∶= ⌊⋅⌉

Barrett Multiplication, a recap
Let 𝑀 ∈ ℕ be odd and 𝐴, 𝐵 ∈ ℤ with |𝐴|, |𝐵| < 2ℓ−1 for ℓ ∈ {16, 32}. Moreover, letJ−K ∶ ℚ → ℤ be any integer approximation, i.e. |𝑥 − J𝑥K | ≤ 1 for all 𝑥 ∈ ℚ, and put
𝑡 mod JK𝑀 ∶= 𝑡 − 𝑞 J𝑡/𝑞K and BARJK

𝑀 (𝐴, 𝐵) = 𝐴𝐵 − 𝑀 ⌊𝐴
r
𝐵⋅2𝑘
𝑀

z
/2𝑘⌉. Then for 𝑅 ∶= 2𝑘,

|BARJK
𝑀 (𝐴, 𝐵)| ≤ 𝐴(𝐵𝑅 modJ K 𝑀)

𝑅 + 𝑅
2

Accuracy for (Rounding) Barrett Multiplication
Take max ℎ with 𝜀 ∶= |⌊𝐵𝑅/𝑀⌉ − 𝐵𝑅/𝑀| ≤ 2−ℎ, and 𝑅 ∶= 2𝑘 where
𝑘 ∶= (ℓ − 1) + ⌊log2𝑀⌋ − ⌈log2 |𝐵|⌉, then BAR

⌊⋅⌉
𝑀 (𝐴, 𝐵) = 𝐴𝐵 mod± 𝑀, if

log2 |𝐴| < (ℓ − 1) − ⌈log2 |𝐵|⌉ − (ℎ − 1)

2023.06.08 BY Yang, M Kannwischer 20/27

Institute of Information Science, Academia Sinica

(Signed) Plantard Multiplication
Useful only on an ARM Cortex-M4 with SMULWx, SMLAWx

We denote by [𝐴]ℓ and [𝐴]ℓ the numbers ⌊𝐴/2ℓ⌋ and 𝐴 mod± 2ℓ respectively.
[Huang et al CHES 2022] Algorithm for odd positive 𝑞 (positive integer 𝛼)

Input: signed integers 𝑎, 𝑏 ∈ [−𝑞2𝛼, 𝑞2𝛼]. 𝑞 < 2ℓ−𝛼−1, 𝑞′ = 𝑞−1 mod± 22ℓ.

Output: 𝑐 = [([[𝑎𝑏𝑞′]2ℓ]
ℓ + 2𝛼) 𝑞]

ℓ
, 𝑐 = 𝑎𝑏(−2−2ℓ) mod± 𝑞 where 𝑐 ∈ (−𝑞2 ,

𝑞
2)

𝑐 ≤ ⌊(2ℓ−1 − 1 + 2𝛼)𝑞/2ℓ⌋ = ⌊(𝑞 − 1)/2 + (1/2 + (2𝛼 − 1)𝑞/2ℓ)⌋ = ⌊𝑞/2⌋

let 𝑝 = 𝑎𝑏𝑞−1 mod± 22ℓ, 𝑝1 = ⌊
𝑝
2ℓ ⌋. 𝑝0 = 𝑝 − 𝑝12

ℓ, then if 0 < 𝑞2ℓ+𝛼 − 𝑝0𝑞 + 𝑎𝑏 < 22ℓ,

then 𝑎𝑏(−2−2ℓ) mod 𝑞≡ (𝑝𝑞 − 𝑎𝑏)/22ℓ = ⌊𝑝𝑞−𝑎𝑏22ℓ + 𝑞2ℓ+𝛼−𝑝0𝑞+𝑎𝑏
22ℓ ⌋ = ⌊(𝑝1 + 2𝛼)𝑞/2ℓ⌋ = 𝑐. But

0 < 𝑞 (2ℓ+𝛼−1 − 2ℓ) < 𝑞 (2ℓ+𝛼 − 2ℓ − 𝑞22𝛼) < 𝑞2ℓ+𝛼 − 𝑝0𝑞 + 𝑎𝑏 < 𝑞2ℓ+𝛼 + 𝑎𝑏 < (3/4)22ℓ.
2023.06.08 BY Yang, M Kannwischer 21/27

Institute of Information Science, Academia Sinica

(Signed) Plantard Multiplication (how to see it)

Alt. Algorithm for odd positive 𝑞 (and positive integer 𝑞̄ > 1 s.t. 𝑞̄𝑞 < 2ℓ−1)
Input: signed integers 𝑎, 𝑏 ∈ [−𝑞𝑞̄, 𝑞𝑞̄]. 𝑞′ = 𝑞−1 mod± 22ℓ.

Output: 𝑐 = [([[𝑎𝑏𝑞′]2ℓ]
ℓ + 𝑞̄) 𝑞]

ℓ
, 𝑐 = 𝑎𝑏(−2−2ℓ) mod± 𝑞 where 𝑐 ∈ (−𝑞2 ,

𝑞
2)

let 𝑝 = 𝑎𝑏𝑞−1 mod± 22ℓ, 𝑝1 = ⌊
𝑝
2ℓ ⌋ ∈ [−2

ℓ−1; 2ℓ−1 − 1], 𝑝0 = 𝑝 − 𝑝12ℓ ∈ [0; 2ℓ − 1].

So −𝑎𝑏2−2ℓ ≡ (𝑝𝑞 − 𝑎𝑏)/22ℓ ≡ 𝑝1𝑞
2ℓ −

𝑎𝑏−𝑝0𝑞
22ℓ (mod 𝑞). 𝑝1𝑞2ℓ ∈ (−

𝑞
2 ;

𝑞
2), and

𝑎𝑏−𝑝0𝑞
22ℓ is

small. So (𝑝1+𝑞̄)𝑞
2ℓ is 𝑎𝑏−𝑝0𝑞+𝑞𝑞̄2ℓ

22ℓ ∈ [0; 34] away from what we want, because

−12 < −
𝑞𝑞̄
2ℓ < −

𝑞𝑞̄ ⋅ 2ℓ−1 + 𝑞 ⋅ 𝑞̄2ℓ−1
22ℓ < −𝑞

2𝑞̄2 + 𝑞2ℓ
22ℓ <

𝑎𝑏 − 𝑝0𝑞
22ℓ < 𝑎𝑏22ℓ <

𝑞2𝑞̄2
22ℓ < 14

2023.06.08 BY Yang, M Kannwischer 22/27

Institute of Information Science, Academia Sinica

Summary of Modular Reductions and multiplications

• Montgomery Reduction/Multiplication: computes a scaled result
• 2 high and one low multiplications, when multiplications are split.
• with a long MADD, can accumulate-then-reduce (Kyber point mul, Dilithium)

• Barrett Reduction: return final exact results, need full-length mul
• Barrett Multiplication: computes an exact result

• 2 low and one high multiplications when multiplications are split.
• can combine with additions or subtractions.
• more useful for vectorized operations or the M3

• Plantard Multiplication: computes a scaled result
• need multiply single-by-two-limbs-return-middle (Kyber NTT)

2023.06.08 BY Yang, M Kannwischer 23/27

Institute of Information Science, Academia Sinica

Here Endth the Reductions Part

Any Questions?

2023.06.08 BY Yang, M Kannwischer 24/27

Institute of Information Science, Academia Sinica

Original Montgomery Formulation

• Suppose we define 𝑋 (𝑀) = 𝑋𝑅 mod 𝑀, so
𝑎(𝑀) = 𝑎𝑅 mod 𝑀, 𝑏(𝑀) = 𝑏𝑅 mod 𝑀, 𝑐(𝑀) = 𝑐𝑅 mod 𝑀, etc.
then if we wish to compute 𝑐 = 𝑎𝑏, the Montgomery reduction of 𝑎(𝑀)𝑏(𝑀) is

MM(𝑎(𝑀), 𝑏(𝑀)) ∶= MR(𝑎(𝑀)𝑏(𝑀)) ≡ 𝑎(𝑀)𝑏(𝑀)/𝑅 ≡ 𝑎𝑏𝑅 ≡ 𝑐(𝑀),

and 𝑎(𝑀) + 𝑏(𝑀) ≡ 𝑐(𝑀)

• So we may make all our computations this way, we call 𝑎(𝑀)

”𝑎 in Montgomery Domain”.

• To compute 𝑎(𝑀), compute the Montgomery reduction of 𝑎(𝑅2 mod 𝑀)
(We can precompute 𝑅2 mod 𝑀)

2023.06.08 BY Yang, M Kannwischer 25/27

Institute of Information Science, Academia Sinica

Original Montgomery Formulation

• Suppose we define 𝑋 (𝑀) = 𝑋𝑅 mod 𝑀, so
𝑎(𝑀) = 𝑎𝑅 mod 𝑀, 𝑏(𝑀) = 𝑏𝑅 mod 𝑀, 𝑐(𝑀) = 𝑐𝑅 mod 𝑀, etc.
then if we wish to compute 𝑐 = 𝑎𝑏, the Montgomery reduction of 𝑎(𝑀)𝑏(𝑀) is

MM(𝑎(𝑀), 𝑏(𝑀)) ∶= MR(𝑎(𝑀)𝑏(𝑀)) ≡ 𝑎(𝑀)𝑏(𝑀)/𝑅 ≡ 𝑎𝑏𝑅 ≡ 𝑐(𝑀),

and 𝑎(𝑀) + 𝑏(𝑀) ≡ 𝑐(𝑀)

• So we may make all our computations this way, we call 𝑎(𝑀)

”𝑎 in Montgomery Domain”.

• To compute 𝑎(𝑀), compute the Montgomery reduction of 𝑎(𝑅2 mod 𝑀)
(We can precompute 𝑅2 mod 𝑀)

2023.06.08 BY Yang, M Kannwischer 25/27

Institute of Information Science, Academia Sinica

Original Montgomery Formulation

• Suppose we define 𝑋 (𝑀) = 𝑋𝑅 mod 𝑀, so
𝑎(𝑀) = 𝑎𝑅 mod 𝑀, 𝑏(𝑀) = 𝑏𝑅 mod 𝑀, 𝑐(𝑀) = 𝑐𝑅 mod 𝑀, etc.
then if we wish to compute 𝑐 = 𝑎𝑏, the Montgomery reduction of 𝑎(𝑀)𝑏(𝑀) is

MM(𝑎(𝑀), 𝑏(𝑀)) ∶= MR(𝑎(𝑀)𝑏(𝑀)) ≡ 𝑎(𝑀)𝑏(𝑀)/𝑅 ≡ 𝑎𝑏𝑅 ≡ 𝑐(𝑀),

and 𝑎(𝑀) + 𝑏(𝑀) ≡ 𝑐(𝑀)

• So we may make all our computations this way, we call 𝑎(𝑀)

”𝑎 in Montgomery Domain”.

• To compute 𝑎(𝑀), compute the Montgomery reduction of 𝑎(𝑅2 mod 𝑀)
(We can precompute 𝑅2 mod 𝑀)

2023.06.08 BY Yang, M Kannwischer 25/27

Institute of Information Science, Academia Sinica

Montgomery Multiplication Mod an Even Number

Suppose gcd(𝑀, 𝑅) ≠ 1, usually 𝑅 = 2𝑘 so this means an even number (the method
below can be extended if 𝑅 is even more composite).

• Want 𝑎𝑏 mod 𝑀 while 𝑀 ≡ 2𝑡𝑢, 𝑢 is odd, 𝑢′ ≡ 1/𝑢 mod 𝑅, 𝑅 = 216

𝐵 = 𝑏𝑅 mod 𝑀, so 𝑀|(𝐵 − 𝑏𝑅) hence 2𝑡|(𝐵 − 𝑏𝑅)
𝐵′ ≡ 𝑢′[𝐵−𝑏𝑅2𝑡] mod 𝑅

• to compute 𝑎𝑏 mod 𝑀, first compute ℓ = 𝑎𝐵′ mod 𝑅,
then 𝑎𝑏 mod 𝑀 = (𝑎𝐵 − ℓ𝑀)/𝑅 mod 𝑀

• Note: Need 𝑎𝐵 = ℓ𝑀 (mod 𝑅) ⇔ 𝑎𝐵/2𝑡 = ℓ𝑢 (mod 𝑅/2𝑡). But this is true since
𝐵′ = 𝑢′𝐵/2𝑡 (mod 𝑅/2𝑡).

2023.06.08 BY Yang, M Kannwischer 26/27

Institute of Information Science, Academia Sinica

Montgomery Multiplication Mod an Even Number

Suppose gcd(𝑀, 𝑅) ≠ 1, usually 𝑅 = 2𝑘 so this means an even number (the method
below can be extended if 𝑅 is even more composite).

• Want 𝑎𝑏 mod 𝑀 while 𝑀 ≡ 2𝑡𝑢, 𝑢 is odd, 𝑢′ ≡ 1/𝑢 mod 𝑅, 𝑅 = 216

𝐵 = 𝑏𝑅 mod 𝑀, so 𝑀|(𝐵 − 𝑏𝑅) hence 2𝑡|(𝐵 − 𝑏𝑅)
𝐵′ ≡ 𝑢′[𝐵−𝑏𝑅2𝑡] mod 𝑅

• to compute 𝑎𝑏 mod 𝑀, first compute ℓ = 𝑎𝐵′ mod 𝑅,
then 𝑎𝑏 mod 𝑀 = (𝑎𝐵 − ℓ𝑀)/𝑅 mod 𝑀

• Note: Need 𝑎𝐵 = ℓ𝑀 (mod 𝑅) ⇔ 𝑎𝐵/2𝑡 = ℓ𝑢 (mod 𝑅/2𝑡). But this is true since
𝐵′ = 𝑢′𝐵/2𝑡 (mod 𝑅/2𝑡).

2023.06.08 BY Yang, M Kannwischer 26/27

Institute of Information Science, Academia Sinica

Montgomery Multiplication Mod an Even Number

Suppose gcd(𝑀, 𝑅) ≠ 1, usually 𝑅 = 2𝑘 so this means an even number (the method
below can be extended if 𝑅 is even more composite).

• Want 𝑎𝑏 mod 𝑀 while 𝑀 ≡ 2𝑡𝑢, 𝑢 is odd, 𝑢′ ≡ 1/𝑢 mod 𝑅, 𝑅 = 216

𝐵 = 𝑏𝑅 mod 𝑀, so 𝑀|(𝐵 − 𝑏𝑅) hence 2𝑡|(𝐵 − 𝑏𝑅)
𝐵′ ≡ 𝑢′[𝐵−𝑏𝑅2𝑡] mod 𝑅

• to compute 𝑎𝑏 mod 𝑀, first compute ℓ = 𝑎𝐵′ mod 𝑅,
then 𝑎𝑏 mod 𝑀 = (𝑎𝐵 − ℓ𝑀)/𝑅 mod 𝑀

• Note: Need 𝑎𝐵 = ℓ𝑀 (mod 𝑅) ⇔ 𝑎𝐵/2𝑡 = ℓ𝑢 (mod 𝑅/2𝑡). But this is true since
𝐵′ = 𝑢′𝐵/2𝑡 (mod 𝑅/2𝑡).

2023.06.08 BY Yang, M Kannwischer 26/27

Institute of Information Science, Academia Sinica

Montgomery Multiplication Mod an Even Number (cont’d)

• first, 𝐵 = 𝑏𝑅 mod 𝑢, so 𝑎𝐵 ≡ 𝑎𝑏𝑅 (mod 𝑢), 𝑎𝐵 − ℓ𝑀 ≡ 𝑎𝑏𝑅 (mod 𝑢) so
(𝑎𝐵 − ℓ𝑀)/𝑅 ≡ 𝑎𝑏 (mod 𝑢)

• second, we want (𝑎𝐵 − ℓ𝑀)/𝑅 ≡ 𝑎𝑏 (mod 2𝑡), or 𝑎𝐵 − ℓ𝑀 ≡ 𝑎𝑏𝑅 (mod 2𝑡𝑅)
(Reminder: 𝑎 ≡ 𝑏 (mod 𝑚) ⇔ 𝑎𝑐 ≡ 𝑏𝑐 (mod 𝑐𝑚))

• since ℓ ≡ 𝑎𝐵′ (mod 𝑅) ⇔ ℓ𝑀 ≡ 𝑎𝐵′𝑀 (mod 𝑅𝑀), thus ≡ 𝑎𝐵′𝑀 (mod 2𝑡𝑅)
so all we need is 𝑎𝐵 − 𝑎𝐵′𝑀 ≡ 𝑎𝑏𝑅 (mod 2𝑡𝑅) ∀𝑎, or 𝐵 − 𝐵′𝑀 ≡ 𝑏𝑅 (mod 2𝑡𝑅)
or 𝐵 − 𝑏𝑅 ≡ 𝐵′𝑀 (mod 2𝑡𝑅)

• but 𝐵′ = 𝑢′ (𝐵−𝑏𝑅2𝑡) (mod 𝑅) or
𝐵𝑀
2𝑡 ≡ 𝑢𝐵

′ ≡ (𝐵−𝑏𝑅2𝑡) (mod 𝑅)

2023.06.08 BY Yang, M Kannwischer 27/27

Institute of Information Science, Academia Sinica

Montgomery Multiplication Mod an Even Number (cont’d)

• first, 𝐵 = 𝑏𝑅 mod 𝑢, so 𝑎𝐵 ≡ 𝑎𝑏𝑅 (mod 𝑢), 𝑎𝐵 − ℓ𝑀 ≡ 𝑎𝑏𝑅 (mod 𝑢) so
(𝑎𝐵 − ℓ𝑀)/𝑅 ≡ 𝑎𝑏 (mod 𝑢)

• second, we want (𝑎𝐵 − ℓ𝑀)/𝑅 ≡ 𝑎𝑏 (mod 2𝑡), or 𝑎𝐵 − ℓ𝑀 ≡ 𝑎𝑏𝑅 (mod 2𝑡𝑅)
(Reminder: 𝑎 ≡ 𝑏 (mod 𝑚) ⇔ 𝑎𝑐 ≡ 𝑏𝑐 (mod 𝑐𝑚))

• since ℓ ≡ 𝑎𝐵′ (mod 𝑅) ⇔ ℓ𝑀 ≡ 𝑎𝐵′𝑀 (mod 𝑅𝑀), thus ≡ 𝑎𝐵′𝑀 (mod 2𝑡𝑅)
so all we need is 𝑎𝐵 − 𝑎𝐵′𝑀 ≡ 𝑎𝑏𝑅 (mod 2𝑡𝑅) ∀𝑎, or 𝐵 − 𝐵′𝑀 ≡ 𝑏𝑅 (mod 2𝑡𝑅)
or 𝐵 − 𝑏𝑅 ≡ 𝐵′𝑀 (mod 2𝑡𝑅)

• but 𝐵′ = 𝑢′ (𝐵−𝑏𝑅2𝑡) (mod 𝑅) or
𝐵𝑀
2𝑡 ≡ 𝑢𝐵

′ ≡ (𝐵−𝑏𝑅2𝑡) (mod 𝑅)

2023.06.08 BY Yang, M Kannwischer 27/27

Institute of Information Science, Academia Sinica

Montgomery Multiplication Mod an Even Number (cont’d)

• first, 𝐵 = 𝑏𝑅 mod 𝑢, so 𝑎𝐵 ≡ 𝑎𝑏𝑅 (mod 𝑢), 𝑎𝐵 − ℓ𝑀 ≡ 𝑎𝑏𝑅 (mod 𝑢) so
(𝑎𝐵 − ℓ𝑀)/𝑅 ≡ 𝑎𝑏 (mod 𝑢)

• second, we want (𝑎𝐵 − ℓ𝑀)/𝑅 ≡ 𝑎𝑏 (mod 2𝑡), or 𝑎𝐵 − ℓ𝑀 ≡ 𝑎𝑏𝑅 (mod 2𝑡𝑅)
(Reminder: 𝑎 ≡ 𝑏 (mod 𝑚) ⇔ 𝑎𝑐 ≡ 𝑏𝑐 (mod 𝑐𝑚))

• since ℓ ≡ 𝑎𝐵′ (mod 𝑅) ⇔ ℓ𝑀 ≡ 𝑎𝐵′𝑀 (mod 𝑅𝑀), thus ≡ 𝑎𝐵′𝑀 (mod 2𝑡𝑅)
so all we need is 𝑎𝐵 − 𝑎𝐵′𝑀 ≡ 𝑎𝑏𝑅 (mod 2𝑡𝑅) ∀𝑎, or 𝐵 − 𝐵′𝑀 ≡ 𝑏𝑅 (mod 2𝑡𝑅)
or 𝐵 − 𝑏𝑅 ≡ 𝐵′𝑀 (mod 2𝑡𝑅)

• but 𝐵′ = 𝑢′ (𝐵−𝑏𝑅2𝑡) (mod 𝑅) or
𝐵𝑀
2𝑡 ≡ 𝑢𝐵

′ ≡ (𝐵−𝑏𝑅2𝑡) (mod 𝑅)

2023.06.08 BY Yang, M Kannwischer 27/27

Institute of Information Science, Academia Sinica

Montgomery Multiplication Mod an Even Number (cont’d)

• first, 𝐵 = 𝑏𝑅 mod 𝑢, so 𝑎𝐵 ≡ 𝑎𝑏𝑅 (mod 𝑢), 𝑎𝐵 − ℓ𝑀 ≡ 𝑎𝑏𝑅 (mod 𝑢) so
(𝑎𝐵 − ℓ𝑀)/𝑅 ≡ 𝑎𝑏 (mod 𝑢)

• second, we want (𝑎𝐵 − ℓ𝑀)/𝑅 ≡ 𝑎𝑏 (mod 2𝑡), or 𝑎𝐵 − ℓ𝑀 ≡ 𝑎𝑏𝑅 (mod 2𝑡𝑅)
(Reminder: 𝑎 ≡ 𝑏 (mod 𝑚) ⇔ 𝑎𝑐 ≡ 𝑏𝑐 (mod 𝑐𝑚))

• since ℓ ≡ 𝑎𝐵′ (mod 𝑅) ⇔ ℓ𝑀 ≡ 𝑎𝐵′𝑀 (mod 𝑅𝑀), thus ≡ 𝑎𝐵′𝑀 (mod 2𝑡𝑅)
so all we need is 𝑎𝐵 − 𝑎𝐵′𝑀 ≡ 𝑎𝑏𝑅 (mod 2𝑡𝑅) ∀𝑎, or 𝐵 − 𝐵′𝑀 ≡ 𝑏𝑅 (mod 2𝑡𝑅)
or 𝐵 − 𝑏𝑅 ≡ 𝐵′𝑀 (mod 2𝑡𝑅)

• but 𝐵′ = 𝑢′ (𝐵−𝑏𝑅2𝑡) (mod 𝑅) or
𝐵𝑀
2𝑡 ≡ 𝑢𝐵

′ ≡ (𝐵−𝑏𝑅2𝑡) (mod 𝑅)

2023.06.08 BY Yang, M Kannwischer 27/27

	Modular Reductions
	Barrett Reductions
	Hensel Remainders and Montgomery Variations

